mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
time: introduce Instant (#10972)
This commit is contained in:
parent
63788b2a51
commit
5d30e8016d
@ -64,7 +64,8 @@ pub const fstat = if (native_arch == .aarch64) private.fstat else private.@"fsta
|
||||
pub const fstatat = if (native_arch == .aarch64) private.fstatat else private.@"fstatat$INODE64";
|
||||
|
||||
pub extern "c" fn mach_absolute_time() u64;
|
||||
pub extern "c" fn mach_timebase_info(tinfo: ?*mach_timebase_info_data) void;
|
||||
pub extern "c" fn mach_continuous_time() u64;
|
||||
pub extern "c" fn mach_timebase_info(tinfo: ?*mach_timebase_info_data) kern_return_t;
|
||||
|
||||
pub extern "c" fn malloc_size(?*const anyopaque) usize;
|
||||
pub extern "c" fn posix_memalign(memptr: *?*anyopaque, alignment: usize, size: usize) c_int;
|
||||
|
||||
286
lib/std/time.zig
286
lib/std/time.zig
@ -4,22 +4,23 @@ const assert = std.debug.assert;
|
||||
const testing = std.testing;
|
||||
const os = std.os;
|
||||
const math = std.math;
|
||||
const is_windows = builtin.os.tag == .windows;
|
||||
|
||||
pub const epoch = @import("time/epoch.zig");
|
||||
|
||||
/// Spurious wakeups are possible and no precision of timing is guaranteed.
|
||||
pub fn sleep(nanoseconds: u64) void {
|
||||
// TODO: opting out of async sleeping?
|
||||
if (std.io.is_async)
|
||||
if (std.io.is_async) {
|
||||
return std.event.Loop.instance.?.sleep(nanoseconds);
|
||||
}
|
||||
|
||||
if (is_windows) {
|
||||
if (builtin.os.tag == .windows) {
|
||||
const big_ms_from_ns = nanoseconds / ns_per_ms;
|
||||
const ms = math.cast(os.windows.DWORD, big_ms_from_ns) catch math.maxInt(os.windows.DWORD);
|
||||
os.windows.kernel32.Sleep(ms);
|
||||
return;
|
||||
}
|
||||
|
||||
if (builtin.os.tag == .wasi) {
|
||||
const w = std.os.wasi;
|
||||
const userdata: w.userdata_t = 0x0123_45678;
|
||||
@ -50,6 +51,10 @@ pub fn sleep(nanoseconds: u64) void {
|
||||
std.os.nanosleep(s, ns);
|
||||
}
|
||||
|
||||
test "sleep" {
|
||||
sleep(1);
|
||||
}
|
||||
|
||||
/// Get a calendar timestamp, in seconds, relative to UTC 1970-01-01.
|
||||
/// Precision of timing depends on the hardware and operating system.
|
||||
/// The return value is signed because it is possible to have a date that is
|
||||
@ -75,7 +80,7 @@ pub fn milliTimestamp() i64 {
|
||||
/// before the epoch.
|
||||
/// See `std.os.clock_gettime` for a POSIX timestamp.
|
||||
pub fn nanoTimestamp() i128 {
|
||||
if (is_windows) {
|
||||
if (builtin.os.tag == .windows) {
|
||||
// FileTime has a granularity of 100 nanoseconds and uses the NTFS/Windows epoch,
|
||||
// which is 1601-01-01.
|
||||
const epoch_adj = epoch.windows * (ns_per_s / 100);
|
||||
@ -84,12 +89,14 @@ pub fn nanoTimestamp() i128 {
|
||||
const ft64 = (@as(u64, ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
|
||||
return @as(i128, @bitCast(i64, ft64) + epoch_adj) * 100;
|
||||
}
|
||||
|
||||
if (builtin.os.tag == .wasi and !builtin.link_libc) {
|
||||
var ns: os.wasi.timestamp_t = undefined;
|
||||
const err = os.wasi.clock_time_get(os.wasi.CLOCK.REALTIME, 1, &ns);
|
||||
assert(err == .SUCCESS);
|
||||
return ns;
|
||||
}
|
||||
|
||||
var ts: os.timespec = undefined;
|
||||
os.clock_gettime(os.CLOCK.REALTIME, &ts) catch |err| switch (err) {
|
||||
error.UnsupportedClock, error.Unexpected => return 0, // "Precision of timing depends on hardware and OS".
|
||||
@ -97,6 +104,18 @@ pub fn nanoTimestamp() i128 {
|
||||
return (@as(i128, ts.tv_sec) * ns_per_s) + ts.tv_nsec;
|
||||
}
|
||||
|
||||
test "timestamp" {
|
||||
const margin = ns_per_ms * 50;
|
||||
|
||||
const time_0 = milliTimestamp();
|
||||
sleep(ns_per_ms);
|
||||
const time_1 = milliTimestamp();
|
||||
const interval = time_1 - time_0;
|
||||
try testing.expect(interval > 0);
|
||||
// Tests should not depend on timings: skip test if outside margin.
|
||||
if (!(interval < margin)) return error.SkipZigTest;
|
||||
}
|
||||
|
||||
// Divisions of a nanosecond.
|
||||
pub const ns_per_us = 1000;
|
||||
pub const ns_per_ms = 1000 * ns_per_us;
|
||||
@ -127,149 +146,162 @@ pub const s_per_hour = s_per_min * 60;
|
||||
pub const s_per_day = s_per_hour * 24;
|
||||
pub const s_per_week = s_per_day * 7;
|
||||
|
||||
/// A monotonic high-performance timer.
|
||||
/// Timer.start() must be called to initialize the struct, which captures
|
||||
/// the counter frequency on windows and darwin, records the resolution,
|
||||
/// and gives the user an opportunity to check for the existnece of
|
||||
/// monotonic clocks without forcing them to check for error on each read.
|
||||
/// .resolution is in nanoseconds on all platforms but .start_time's meaning
|
||||
/// depends on the OS. On Windows and Darwin it is a hardware counter
|
||||
/// value that requires calculation to convert to a meaninful unit.
|
||||
/// An Instant represents a timestamp with respect to the currently
|
||||
/// executing program that ticks during suspend and can be used to
|
||||
/// record elapsed time unlike `nanoTimestamp`.
|
||||
///
|
||||
/// It tries to sample the system's fastest and most precise timer available.
|
||||
/// It also tries to be monotonic, but this is not a guarantee due to OS/hardware bugs.
|
||||
/// If you need monotonic readings for elapsed time, consider `Timer` instead.
|
||||
pub const Instant = struct {
|
||||
timestamp: if (is_posix) os.timespec else u64,
|
||||
|
||||
// true if we should use clock_gettime()
|
||||
const is_posix = switch (builtin.os.tag) {
|
||||
.wasi => builtin.link_libc,
|
||||
.windows => false,
|
||||
else => true,
|
||||
};
|
||||
|
||||
/// Queries the system for the current moment of time as an Instant.
|
||||
/// This is not guaranteed to be monotonic or steadily increasing, but for most implementations it is.
|
||||
/// Returns `error.Unsupported` when a suitable clock is not detected.
|
||||
pub fn now() error{Unsupported}!Instant {
|
||||
// QPC on windows doesn't fail on >= XP/2000 and includes time suspended.
|
||||
if (builtin.os.tag == .windows) {
|
||||
return Instant{ .timestamp = os.windows.QueryPerformanceCounter() };
|
||||
}
|
||||
|
||||
// On WASI without libc, use clock_time_get directly.
|
||||
if (builtin.os.tag == .wasi and !builtin.link_libc) {
|
||||
var ns: os.wasi.timestamp_t = undefined;
|
||||
const rc = os.wasi.clock_time_get(os.wasi.CLOCK.MONOTONIC, 1, &ns);
|
||||
if (rc != .SUCCESS) return error.Unsupported;
|
||||
return Instant{ .timestamp = ns };
|
||||
}
|
||||
|
||||
// On darwin, use UPTIME_RAW instead of MONOTONIC as it ticks while suspended.
|
||||
// On linux, use BOOTTIME instead of MONOTONIC as it ticks while suspended.
|
||||
// On freebsd derivatives, use MONOTONIC_FAST as currently there's no precision tradeoff.
|
||||
// On other posix systems, MONOTONIC is generally the fastest and ticks while suspended.
|
||||
const clock_id = switch (builtin.os.tag) {
|
||||
.macos, .ios, .tvos, .watchos => os.CLOCK.UPTIME_RAW,
|
||||
.freebsd, .dragonfly => os.CLOCK.MONOTONIC_FAST,
|
||||
.linux => os.CLOCK.BOOTTIME,
|
||||
else => os.CLOCK.MONOTONIC,
|
||||
};
|
||||
|
||||
var ts: os.timespec = undefined;
|
||||
os.clock_gettime(clock_id, &ts) catch return error.Unsupported;
|
||||
return Instant{ .timestamp = ts };
|
||||
}
|
||||
|
||||
/// Quickly compares two instances between each other.
|
||||
pub fn order(self: Instant, other: Instant) std.math.Order {
|
||||
// windows and wasi timestamps are in u64 which is easily comparible
|
||||
if (!is_posix) {
|
||||
return std.math.order(self.timestamp, other.timestamp);
|
||||
}
|
||||
|
||||
var ord = std.math.order(self.timestamp.tv_sec, other.timestamp.tv_sec);
|
||||
if (ord == .eq) {
|
||||
ord = std.math.order(self.timestamp.tv_nsec, other.timestamp.tv_nsec);
|
||||
}
|
||||
return ord;
|
||||
}
|
||||
|
||||
/// Returns elapsed time in nanoseconds since the `earlier` Instant.
|
||||
/// This assumes that the `earlier` Instant represents a moment in time before or equal to `self`.
|
||||
/// This also assumes that the time that has passed between both Instants fits inside a u64 (~585 yrs).
|
||||
pub fn since(self: Instant, earlier: Instant) u64 {
|
||||
if (builtin.os.tag == .windows) {
|
||||
// We don't need to cache QPF as it's internally just a memory read to KUSER_SHARED_DATA
|
||||
// (a read-only page of info updated and mapped by the kernel to all processes):
|
||||
// https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-kuser_shared_data
|
||||
// https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser_shared_data/index.htm
|
||||
const qpc = self.timestamp - earlier.timestamp;
|
||||
const qpf = os.windows.QueryPerformanceFrequency();
|
||||
|
||||
// 10Mhz (1 qpc tick every 100ns) is a common enough QPF value that we can optimize on it.
|
||||
// https://github.com/microsoft/STL/blob/785143a0c73f030238ef618890fd4d6ae2b3a3a0/stl/inc/chrono#L694-L701
|
||||
const common_qpf = 10_000_000;
|
||||
if (qpf == common_qpf) {
|
||||
return qpc * (ns_per_s / common_qpf);
|
||||
}
|
||||
|
||||
// Convert to ns using fixed point.
|
||||
const scale = @as(u64, std.time.ns_per_s << 32) / @intCast(u32, qpf);
|
||||
const result = (@as(u96, qpc) * scale) >> 32;
|
||||
return @truncate(u64, result);
|
||||
}
|
||||
|
||||
// WASI timestamps are directly in nanoseconds
|
||||
if (builtin.os.tag == .wasi and !builtin.link_libc) {
|
||||
return self.timestamp - earlier.timestamp;
|
||||
}
|
||||
|
||||
// Convert timespec diff to ns
|
||||
const seconds = @intCast(u64, self.timestamp.tv_sec - earlier.timestamp.tv_sec);
|
||||
const elapsed = (seconds * ns_per_s) + @intCast(u32, self.timestamp.tv_nsec);
|
||||
return elapsed - @intCast(u32, earlier.timestamp.tv_nsec);
|
||||
}
|
||||
};
|
||||
|
||||
/// A monotonic, high performance timer.
|
||||
///
|
||||
/// Timer.start() is used to initalize the timer
|
||||
/// and gives the caller an opportunity to check for the existence of a supported clock.
|
||||
/// Once a supported clock is discovered,
|
||||
/// it is assumed that it will be available for the duration of the Timer's use.
|
||||
///
|
||||
/// Monotonicity is ensured by saturating on the most previous sample.
|
||||
/// This means that while timings reported are monotonic,
|
||||
/// they're not guaranteed to tick at a steady rate as this is up to the underlying system.
|
||||
pub const Timer = struct {
|
||||
///if we used resolution's value when performing the
|
||||
/// performance counter calc on windows/darwin, it would
|
||||
/// be less precise
|
||||
frequency: switch (builtin.os.tag) {
|
||||
.windows => u64,
|
||||
.macos, .ios, .tvos, .watchos => os.darwin.mach_timebase_info_data,
|
||||
else => void,
|
||||
},
|
||||
resolution: u64,
|
||||
start_time: u64,
|
||||
started: Instant,
|
||||
previous: Instant,
|
||||
|
||||
pub const Error = error{TimerUnsupported};
|
||||
|
||||
/// At some point we may change our minds on RAW, but for now we're
|
||||
/// sticking with posix standard MONOTONIC. For more information, see:
|
||||
/// https://github.com/ziglang/zig/pull/933
|
||||
const monotonic_clock_id = os.CLOCK.MONOTONIC;
|
||||
|
||||
/// Initialize the timer structure.
|
||||
/// Can only fail when running in a hostile environment that intentionally injects
|
||||
/// error values into syscalls, such as using seccomp on Linux to intercept
|
||||
/// `clock_gettime`.
|
||||
/// Initialize the timer by querying for a supported clock.
|
||||
/// Returns `error.TimerUnsupported` when such a clock is unavailable.
|
||||
/// This should only fail in hostile environments such as linux seccomp misuse.
|
||||
pub fn start() Error!Timer {
|
||||
// This gives us an opportunity to grab the counter frequency in windows.
|
||||
// On Windows: QueryPerformanceCounter will succeed on anything >= XP/2000.
|
||||
// On Posix: CLOCK.MONOTONIC will only fail if the monotonic counter is not
|
||||
// supported, or if the timespec pointer is out of bounds, which should be
|
||||
// impossible here barring cosmic rays or other such occurrences of
|
||||
// incredibly bad luck.
|
||||
// On Darwin: This cannot fail, as far as I am able to tell.
|
||||
if (is_windows) {
|
||||
const freq = os.windows.QueryPerformanceFrequency();
|
||||
return Timer{
|
||||
.frequency = freq,
|
||||
.resolution = @divFloor(ns_per_s, freq),
|
||||
.start_time = os.windows.QueryPerformanceCounter(),
|
||||
};
|
||||
} else if (comptime builtin.target.isDarwin()) {
|
||||
var freq: os.darwin.mach_timebase_info_data = undefined;
|
||||
os.darwin.mach_timebase_info(&freq);
|
||||
|
||||
return Timer{
|
||||
.frequency = freq,
|
||||
.resolution = @divFloor(freq.numer, freq.denom),
|
||||
.start_time = os.darwin.mach_absolute_time(),
|
||||
};
|
||||
} else {
|
||||
// On Linux, seccomp can do arbitrary things to our ability to call
|
||||
// syscalls, including return any errno value it wants and
|
||||
// inconsistently throwing errors. Since we can't account for
|
||||
// abuses of seccomp in a reasonable way, we'll assume that if
|
||||
// seccomp is going to block us it will at least do so consistently
|
||||
var res: os.timespec = undefined;
|
||||
os.clock_getres(monotonic_clock_id, &res) catch return error.TimerUnsupported;
|
||||
|
||||
var ts: os.timespec = undefined;
|
||||
os.clock_gettime(monotonic_clock_id, &ts) catch return error.TimerUnsupported;
|
||||
|
||||
return Timer{
|
||||
.resolution = @intCast(u64, res.tv_sec) * ns_per_s + @intCast(u64, res.tv_nsec),
|
||||
.start_time = @intCast(u64, ts.tv_sec) * ns_per_s + @intCast(u64, ts.tv_nsec),
|
||||
.frequency = {},
|
||||
};
|
||||
}
|
||||
const current = Instant.now() catch return error.TimerUnsupported;
|
||||
return Timer{ .started = current, .previous = current };
|
||||
}
|
||||
|
||||
/// Reads the timer value since start or the last reset in nanoseconds
|
||||
pub fn read(self: Timer) u64 {
|
||||
var clock = clockNative() - self.start_time;
|
||||
return self.nativeDurationToNanos(clock);
|
||||
/// Reads the timer value since start or the last reset in nanoseconds.
|
||||
pub fn read(self: *Timer) u64 {
|
||||
const current = self.sample();
|
||||
return current.since(self.started);
|
||||
}
|
||||
|
||||
/// Resets the timer value to 0/now.
|
||||
pub fn reset(self: *Timer) void {
|
||||
self.start_time = clockNative();
|
||||
const current = self.sample();
|
||||
self.started = current;
|
||||
}
|
||||
|
||||
/// Returns the current value of the timer in nanoseconds, then resets it
|
||||
/// Returns the current value of the timer in nanoseconds, then resets it.
|
||||
pub fn lap(self: *Timer) u64 {
|
||||
var now = clockNative();
|
||||
var lap_time = self.nativeDurationToNanos(now - self.start_time);
|
||||
self.start_time = now;
|
||||
return lap_time;
|
||||
const current = self.sample();
|
||||
defer self.started = current;
|
||||
return current.since(self.started);
|
||||
}
|
||||
|
||||
fn clockNative() u64 {
|
||||
if (is_windows) {
|
||||
return os.windows.QueryPerformanceCounter();
|
||||
/// Returns an Instant sampled at the callsite that is
|
||||
/// guaranteed to be monotonic with respect to the timer's starting point.
|
||||
fn sample(self: *Timer) Instant {
|
||||
const current = Instant.now() catch unreachable;
|
||||
if (current.order(self.previous) == .gt) {
|
||||
self.previous = current;
|
||||
}
|
||||
if (comptime builtin.target.isDarwin()) {
|
||||
return os.darwin.mach_absolute_time();
|
||||
}
|
||||
var ts: os.timespec = undefined;
|
||||
os.clock_gettime(monotonic_clock_id, &ts) catch unreachable;
|
||||
return @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
|
||||
}
|
||||
|
||||
fn nativeDurationToNanos(self: Timer, duration: u64) u64 {
|
||||
if (is_windows) {
|
||||
return safeMulDiv(duration, ns_per_s, self.frequency);
|
||||
}
|
||||
if (comptime builtin.target.isDarwin()) {
|
||||
return safeMulDiv(duration, self.frequency.numer, self.frequency.denom);
|
||||
}
|
||||
return duration;
|
||||
return self.previous;
|
||||
}
|
||||
};
|
||||
|
||||
// Calculate (a * b) / c without risk of overflowing too early because of the
|
||||
// multiplication.
|
||||
fn safeMulDiv(a: u64, b: u64, c: u64) u64 {
|
||||
const q = a / c;
|
||||
const r = a % c;
|
||||
// (a * b) / c == (a / c) * b + ((a % c) * b) / c
|
||||
return (q * b) + (r * b) / c;
|
||||
}
|
||||
|
||||
test "sleep" {
|
||||
sleep(1);
|
||||
}
|
||||
|
||||
test "timestamp" {
|
||||
const margin = ns_per_ms * 50;
|
||||
|
||||
const time_0 = milliTimestamp();
|
||||
sleep(ns_per_ms);
|
||||
const time_1 = milliTimestamp();
|
||||
const interval = time_1 - time_0;
|
||||
try testing.expect(interval > 0);
|
||||
// Tests should not depend on timings: skip test if outside margin.
|
||||
if (!(interval < margin)) return error.SkipZigTest;
|
||||
}
|
||||
|
||||
test "Timer" {
|
||||
test "Timer + Instant" {
|
||||
const margin = ns_per_ms * 150;
|
||||
|
||||
var timer = try Timer.start();
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user