expand argv[0] when spawning system C compiler

Some C compilers, such as Clang, are known to rely on
argv[0] to find the path to their own executable,
without even bothering to resolve PATH. This results
in the message:

error: unable to execute command: Executable "" doesn't exist!

So we tell ChildProcess to expand argv[0] to the absolute path
to give them a helping hand.
This commit is contained in:
Andrew Kelley 2020-02-17 00:58:30 -05:00
parent a5d47be5ad
commit 44c14749a1
No known key found for this signature in database
GPG Key ID: 7C5F548F728501A9
3 changed files with 122 additions and 30 deletions

View File

@ -49,6 +49,10 @@ pub const ChildProcess = struct {
err_pipe: if (builtin.os == .windows) void else [2]os.fd_t,
expand_arg0: Arg0Expand,
pub const Arg0Expand = os.Arg0Expand;
pub const SpawnError = error{
OutOfMemory,
@ -100,6 +104,7 @@ pub const ChildProcess = struct {
.stdin_behavior = StdIo.Inherit,
.stdout_behavior = StdIo.Inherit,
.stderr_behavior = StdIo.Inherit,
.expand_arg0 = .no_expand,
};
errdefer allocator.destroy(child);
return child;
@ -172,34 +177,56 @@ pub const ChildProcess = struct {
/// Spawns a child process, waits for it, collecting stdout and stderr, and then returns.
/// If it succeeds, the caller owns result.stdout and result.stderr memory.
/// TODO deprecate in favor of exec2
pub fn exec(
allocator: *mem.Allocator,
argv: []const []const u8,
cwd: ?[]const u8,
env_map: ?*const BufMap,
max_output_size: usize,
max_output_bytes: usize,
) !ExecResult {
const child = try ChildProcess.init(argv, allocator);
return exec2(.{
.allocator = allocator,
.argv = argv,
.cwd = cwd,
.env_map = env_map,
.max_output_bytes = max_output_bytes,
});
}
/// Spawns a child process, waits for it, collecting stdout and stderr, and then returns.
/// If it succeeds, the caller owns result.stdout and result.stderr memory.
/// TODO rename to exec
pub fn exec2(args: struct {
allocator: *mem.Allocator,
argv: []const []const u8,
cwd: ?[]const u8 = null,
env_map: ?*const BufMap = null,
max_output_bytes: usize = 50 * 1024,
expand_arg0: Arg0Expand = .no_expand,
}) !ExecResult {
const child = try ChildProcess.init(args.argv, args.allocator);
defer child.deinit();
child.stdin_behavior = ChildProcess.StdIo.Ignore;
child.stdout_behavior = ChildProcess.StdIo.Pipe;
child.stderr_behavior = ChildProcess.StdIo.Pipe;
child.cwd = cwd;
child.env_map = env_map;
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Pipe;
child.stderr_behavior = .Pipe;
child.cwd = args.cwd;
child.env_map = args.env_map;
child.expand_arg0 = args.expand_arg0;
try child.spawn();
var stdout = Buffer.initNull(allocator);
var stderr = Buffer.initNull(allocator);
var stdout = Buffer.initNull(args.allocator);
var stderr = Buffer.initNull(args.allocator);
defer Buffer.deinit(&stdout);
defer Buffer.deinit(&stderr);
var stdout_file_in_stream = child.stdout.?.inStream();
var stderr_file_in_stream = child.stderr.?.inStream();
try stdout_file_in_stream.stream.readAllBuffer(&stdout, max_output_size);
try stderr_file_in_stream.stream.readAllBuffer(&stderr, max_output_size);
try stdout_file_in_stream.stream.readAllBuffer(&stdout, args.max_output_bytes);
try stderr_file_in_stream.stream.readAllBuffer(&stderr, args.max_output_bytes);
return ExecResult{
.term = try child.wait(),
@ -418,7 +445,7 @@ pub const ChildProcess = struct {
os.setreuid(uid, uid) catch |err| forkChildErrReport(err_pipe[1], err);
}
const err = os.execvpe(self.allocator, self.argv, env_map);
const err = os.execvpe_expandArg0(self.allocator, self.expand_arg0, self.argv, env_map);
forkChildErrReport(err_pipe[1], err);
}

View File

@ -916,10 +916,13 @@ pub const ExecveError = error{
NameTooLong,
} || UnexpectedError;
/// Deprecated in favor of `execveZ`.
pub const execveC = execveZ;
/// Like `execve` except the parameters are null-terminated,
/// matching the syscall API on all targets. This removes the need for an allocator.
/// This function ignores PATH environment variable. See `execvpeC` for that.
pub fn execveC(path: [*:0]const u8, child_argv: [*:null]const ?[*:0]const u8, envp: [*:null]const ?[*:0]const u8) ExecveError {
/// This function ignores PATH environment variable. See `execvpeZ` for that.
pub fn execveZ(path: [*:0]const u8, child_argv: [*:null]const ?[*:0]const u8, envp: [*:null]const ?[*:0]const u8) ExecveError {
switch (errno(system.execve(path, child_argv, envp))) {
0 => unreachable,
EFAULT => unreachable,
@ -942,11 +945,25 @@ pub fn execveC(path: [*:0]const u8, child_argv: [*:null]const ?[*:0]const u8, en
}
}
/// Like `execvpe` except the parameters are null-terminated,
/// matching the syscall API on all targets. This removes the need for an allocator.
/// This function also uses the PATH environment variable to get the full path to the executable.
/// If `file` is an absolute path, this is the same as `execveC`.
pub fn execvpeC(file: [*:0]const u8, child_argv: [*:null]const ?[*:0]const u8, envp: [*:null]const ?[*:0]const u8) ExecveError {
/// Deprecated in favor of `execvpeZ`.
pub const execvpeC = execvpeZ;
pub const Arg0Expand = enum {
expand,
no_expand,
};
/// Like `execvpeZ` except if `arg0_expand` is `.expand`, then `argv` is mutable,
/// and `argv[0]` is expanded to be the same absolute path that is passed to the execve syscall.
pub fn execvpeZ_expandArg0(
comptime arg0_expand: Arg0Expand,
file: [*:0]const u8,
child_argv: switch (arg0_expand) {
.expand => [*:null]?[*:0]const u8,
.no_expand => [*:null]const ?[*:0]const u8,
},
envp: [*:null]const ?[*:0]const u8,
) ExecveError {
const file_slice = mem.toSliceConst(u8, file);
if (mem.indexOfScalar(u8, file_slice, '/') != null) return execveC(file, child_argv, envp);
@ -962,7 +979,12 @@ pub fn execvpeC(file: [*:0]const u8, child_argv: [*:null]const ?[*:0]const u8, e
mem.copy(u8, path_buf[search_path.len + 1 ..], file_slice);
const path_len = search_path.len + file_slice.len + 1;
path_buf[path_len] = 0;
err = execveC(path_buf[0..path_len :0].ptr, child_argv, envp);
const full_path = path_buf[0..path_len :0].ptr;
switch (arg0_expand) {
.expand => child_argv[0] = full_path,
.no_expand => {},
}
err = execveC(full_path, child_argv, envp);
switch (err) {
error.AccessDenied => seen_eacces = true,
error.FileNotFound, error.NotDir => {},
@ -973,13 +995,24 @@ pub fn execvpeC(file: [*:0]const u8, child_argv: [*:null]const ?[*:0]const u8, e
return err;
}
/// This function must allocate memory to add a null terminating bytes on path and each arg.
/// It must also convert to KEY=VALUE\0 format for environment variables, and include null
/// pointers after the args and after the environment variables.
/// `argv_slice[0]` is the executable path.
/// Like `execvpe` except the parameters are null-terminated,
/// matching the syscall API on all targets. This removes the need for an allocator.
/// This function also uses the PATH environment variable to get the full path to the executable.
pub fn execvpe(
/// If `file` is an absolute path, this is the same as `execveC`.
pub fn execvpeZ(
file: [*:0]const u8,
argv: [*:null]const ?[*:0]const u8,
envp: [*:null]const ?[*:0]const u8,
) ExecveError {
return execvpeZ_expandArg0(.no_expand, file, argv, envp);
}
/// This is the same as `execvpe` except if the `arg0_expand` parameter is set to `.expand`,
/// then argv[0] will be replaced with the expanded version of it, after resolving in accordance
/// with the PATH environment variable.
pub fn execvpe_expandArg0(
allocator: *mem.Allocator,
arg0_expand: Arg0Expand,
argv_slice: []const []const u8,
env_map: *const std.BufMap,
) (ExecveError || error{OutOfMemory}) {
@ -1004,7 +1037,23 @@ pub fn execvpe(
const envp_buf = try createNullDelimitedEnvMap(allocator, env_map);
defer freeNullDelimitedEnvMap(allocator, envp_buf);
return execvpeC(argv_buf.ptr[0].?, argv_ptr, envp_buf.ptr);
switch (arg0_expand) {
.expand => return execvpeZ_expandArg0(.expand, argv_buf.ptr[0].?, argv_ptr, envp_buf.ptr),
.no_expand => return execvpeZ_expandArg0(.no_expand, argv_buf.ptr[0].?, argv_ptr, envp_buf.ptr),
}
}
/// This function must allocate memory to add a null terminating bytes on path and each arg.
/// It must also convert to KEY=VALUE\0 format for environment variables, and include null
/// pointers after the args and after the environment variables.
/// `argv_slice[0]` is the executable path.
/// This function also uses the PATH environment variable to get the full path to the executable.
pub fn execvpe(
allocator: *mem.Allocator,
argv_slice: []const []const u8,
env_map: *const std.BufMap,
) (ExecveError || error{OutOfMemory}) {
return execvpe_expandArg0(allocator, .no_expand, argv_slice, env_map);
}
pub fn createNullDelimitedEnvMap(allocator: *mem.Allocator, env_map: *const std.BufMap) ![:null]?[*:0]u8 {

View File

@ -241,8 +241,16 @@ pub const LibCInstallation = struct {
"-xc",
dev_null,
};
const max_bytes = 1024 * 1024;
const exec_res = std.ChildProcess.exec(allocator, &argv, null, null, max_bytes) catch |err| switch (err) {
const exec_res = std.ChildProcess.exec2(.{
.allocator = allocator,
.argv = &argv,
.max_output_bytes = 1024 * 1024,
// Some C compilers, such as Clang, are known to rely on argv[0] to find the path
// to their own executable, without even bothering to resolve PATH. This results in the message:
// error: unable to execute command: Executable "" doesn't exist!
// So we use the expandArg0 variant of ChildProcess to give them a helping hand.
.expand_arg0 = .expand,
}) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => return error.UnableToSpawnCCompiler,
};
@ -494,8 +502,16 @@ pub fn ccPrintFileName(
defer allocator.free(arg1);
const argv = [_][]const u8{ cc_exe, arg1 };
const max_bytes = 1024 * 1024;
const exec_res = std.ChildProcess.exec(allocator, &argv, null, null, max_bytes) catch |err| switch (err) {
const exec_res = std.ChildProcess.exec2(.{
.allocator = allocator,
.argv = &argv,
.max_output_bytes = 1024 * 1024,
// Some C compilers, such as Clang, are known to rely on argv[0] to find the path
// to their own executable, without even bothering to resolve PATH. This results in the message:
// error: unable to execute command: Executable "" doesn't exist!
// So we use the expandArg0 variant of ChildProcess to give them a helping hand.
.expand_arg0 = .expand,
}) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => return error.UnableToSpawnCCompiler,
};