Sema: enhance div_trunc, div_exact, div_floor

* No longer emit div_exact AIR instruction that can produce a
   remainder, invoking undefined behavior.
 * div_trunc, div_exact, div_floor are extracted from analyzeArithmetic
   and directly handled similarly to div_trunc, integrating them with
   integer overflow safety checking.
 * Also they no longer emit divide-by-zero safety checking when RHS
   is comptime known to be non-zero.
This commit is contained in:
Andrew Kelley 2022-07-28 20:46:56 -07:00
parent 1fc24e8d80
commit 40f8f0134f
2 changed files with 503 additions and 355 deletions

View File

@ -111,8 +111,9 @@ pub const Inst = struct {
div_floor,
/// Same as `div_floor` with optimized float mode.
div_floor_optimized,
/// Integer or float division. Guaranteed no remainder.
/// For integers, wrapping is undefined behavior.
/// Integer or float division.
/// If a remainder would be produced, undefined behavior occurs.
/// For integers, overflow is undefined behavior.
/// Both operands are guaranteed to be the same type, and the result type
/// is the same as both operands.
/// Uses the `bin_op` field.

View File

@ -875,10 +875,6 @@ fn analyzeBodyInner(
.add => try sema.zirArithmetic(block, inst, .add),
.addwrap => try sema.zirArithmetic(block, inst, .addwrap),
.add_sat => try sema.zirArithmetic(block, inst, .add_sat),
.div => try sema.zirDiv(block, inst),
.div_exact => try sema.zirArithmetic(block, inst, .div_exact),
.div_floor => try sema.zirArithmetic(block, inst, .div_floor),
.div_trunc => try sema.zirArithmetic(block, inst, .div_trunc),
.mod_rem => try sema.zirArithmetic(block, inst, .mod_rem),
.mod => try sema.zirArithmetic(block, inst, .mod),
.rem => try sema.zirArithmetic(block, inst, .rem),
@ -889,6 +885,11 @@ fn analyzeBodyInner(
.subwrap => try sema.zirArithmetic(block, inst, .subwrap),
.sub_sat => try sema.zirArithmetic(block, inst, .sub_sat),
.div => try sema.zirDiv(block, inst),
.div_exact => try sema.zirDivExact(block, inst),
.div_floor => try sema.zirDivFloor(block, inst),
.div_trunc => try sema.zirDivTrunc(block, inst),
.maximum => try sema.zirMinMax(block, inst, .max),
.minimum => try sema.zirMinMax(block, inst, .min),
@ -10999,6 +11000,7 @@ fn zirDiv(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Ins
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
// TODO: if the RHS is one, return the LHS directly
}
},
else => {},
@ -11041,105 +11043,8 @@ fn zirDiv(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Ins
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
int_overflow: {
if (!is_int) break :int_overflow;
// If the LHS is unsigned, it cannot cause overflow.
if (!lhs_scalar_ty.isSignedInt()) break :int_overflow;
// If the LHS is widened to a larger integer type, no overflow is possible.
if (lhs_scalar_ty.intInfo(target).bits < resolved_type.intInfo(target).bits) {
break :int_overflow;
}
const min_int = try resolved_type.minInt(sema.arena, target);
const neg_one = try Value.Tag.int_i64.create(sema.arena, -1);
// If the LHS is comptime-known to be not equal to the min int,
// no overflow is possible.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.compare(.eq, min_int, resolved_type, mod)) break :int_overflow;
}
// If the RHS is comptime-known to not be equal to -1, no overflow is possible.
if (maybe_rhs_val) |rhs_val| {
if (!rhs_val.compare(.eq, neg_one, resolved_type, mod)) break :int_overflow;
}
var ok: Air.Inst.Ref = .none;
if (resolved_type.zigTypeTag() == .Vector) {
const vector_ty_ref = try sema.addType(resolved_type);
if (maybe_lhs_val == null) {
const min_int_ref = try sema.addConstant(
resolved_type,
try Value.Tag.repeated.create(sema.arena, min_int),
);
ok = try block.addCmpVector(casted_lhs, min_int_ref, .neq, vector_ty_ref);
}
if (maybe_rhs_val == null) {
const neg_one_ref = try sema.addConstant(
resolved_type,
try Value.Tag.repeated.create(sema.arena, neg_one),
);
const rhs_ok = try block.addCmpVector(casted_rhs, neg_one_ref, .neq, vector_ty_ref);
if (ok == .none) {
ok = rhs_ok;
} else {
ok = try block.addBinOp(.bool_or, ok, rhs_ok);
}
}
assert(ok != .none);
ok = try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else {
if (maybe_lhs_val == null) {
const min_int_ref = try sema.addConstant(resolved_type, min_int);
ok = try block.addBinOp(.cmp_neq, casted_lhs, min_int_ref);
}
if (maybe_rhs_val == null) {
const neg_one_ref = try sema.addConstant(resolved_type, neg_one);
const rhs_ok = try block.addBinOp(.cmp_neq, casted_rhs, neg_one_ref);
if (ok == .none) {
ok = rhs_ok;
} else {
ok = try block.addBinOp(.bool_or, ok, rhs_ok);
}
}
assert(ok != .none);
}
try sema.addSafetyCheck(block, ok, .integer_overflow);
}
div_by_zero: {
// Strict IEEE floats have well-defined division by zero.
if (!is_int and block.float_mode == .Strict) break :div_by_zero;
// If rhs was comptime-known to be zero a compile error would have been
// emitted above.
if (maybe_rhs_val != null) break :div_by_zero;
const ok = if (resolved_type.zigTypeTag() == .Vector) ok: {
const zero_val = try Value.Tag.repeated.create(sema.arena, Value.zero);
const zero = try sema.addConstant(resolved_type, zero_val);
const ok = try block.addCmpVector(casted_rhs, zero, .neq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = if (is_int) .reduce else .reduce_optimized,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else ok: {
const zero = try sema.addConstant(resolved_type, Value.zero);
break :ok try block.addBinOp(if (is_int) .cmp_neq else .cmp_neq_optimized, casted_rhs, zero);
};
try sema.addSafetyCheck(block, ok, .divide_by_zero);
}
try sema.addDivIntOverflowSafety(block, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
const air_tag = if (is_int) Air.Inst.Tag.div_trunc else switch (block.float_mode) {
@ -11149,6 +11054,497 @@ fn zirDiv(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Ins
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn zirDivExact(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison();
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison();
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty, .div_exact);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType();
const scalar_tag = resolved_type.scalarType().zigTypeTag();
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_exact);
const mod = sema.mod;
const target = mod.getTarget();
const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(block, lhs_src, casted_lhs);
const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(block, rhs_src, casted_rhs);
const runtime_src = rs: {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, compile error because there is a possible
// value for which the division would result in a remainder.
// TODO: emit runtime safety for if there is a remainder
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, compile error because there is a possible
// value for which the division would result in a remainder.
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
} else {
if (try lhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.addConstant(resolved_type, Value.zero);
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
// TODO: if the RHS is one, return the LHS directly
}
if (maybe_lhs_val) |lhs_val| {
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
// TODO: emit compile error if there is a remainder
return sema.addConstant(
resolved_type,
try lhs_val.intDiv(rhs_val, resolved_type, sema.arena, target),
);
} else {
// TODO: emit compile error if there is a remainder
return sema.addConstant(
resolved_type,
try lhs_val.floatDiv(rhs_val, resolved_type, sema.arena, target),
);
}
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
// Depending on whether safety is enabled, we will have a slightly different strategy
// here. The `div_exact` AIR instruction causes undefined behavior if a remainder
// is produced, so in the safety check case, it cannot be used. Instead we do a
// div_trunc and check for remainder.
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, resolved_type, maybe_rhs_val, casted_rhs, is_int);
const result = try block.addBinOp(.div_trunc, casted_lhs, casted_rhs);
const ok = if (!is_int) ok: {
const floored = try block.addUnOp(.floor, result);
if (resolved_type.zigTypeTag() == .Vector) {
const eql = try block.addCmpVector(result, floored, .eq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = switch (block.float_mode) {
.Strict => .reduce,
.Optimized => .reduce_optimized,
},
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else {
const is_in_range = try block.addBinOp(switch (block.float_mode) {
.Strict => .cmp_eq,
.Optimized => .cmp_eq_optimized,
}, result, floored);
break :ok is_in_range;
}
} else ok: {
const remainder = try block.addBinOp(.rem, casted_lhs, casted_rhs);
if (resolved_type.zigTypeTag() == .Vector) {
const zero_val = try Value.Tag.repeated.create(sema.arena, Value.zero);
const zero = try sema.addConstant(resolved_type, zero_val);
const eql = try block.addCmpVector(remainder, zero, .eq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else {
const zero = try sema.addConstant(resolved_type, Value.zero);
const is_in_range = try block.addBinOp(.cmp_eq, remainder, zero);
break :ok is_in_range;
}
};
try sema.addSafetyCheck(block, ok, .exact_division_remainder);
return result;
}
return block.addBinOp(airTag(block, is_int, .div_exact, .div_exact_optimized), casted_lhs, casted_rhs);
}
fn zirDivFloor(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison();
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison();
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty, .div_floor);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType();
const rhs_scalar_ty = rhs_ty.scalarType();
const scalar_tag = resolved_type.scalarType().zigTypeTag();
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_floor);
const mod = sema.mod;
const target = mod.getTarget();
const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(block, lhs_src, casted_lhs);
const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(block, rhs_src, casted_rhs);
const runtime_src = rs: {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef()) {
if (try lhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.addConstant(resolved_type, Value.zero);
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
// TODO: if the RHS is one, return the LHS directly
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef()) {
if (lhs_scalar_ty.isSignedInt() and rhs_scalar_ty.isSignedInt()) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compare(block, src, rhs_val, .neq, Value.negative_one, resolved_type)) {
return sema.addConstUndef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return sema.addConstUndef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
return sema.addConstant(
resolved_type,
try lhs_val.intDivFloor(rhs_val, resolved_type, sema.arena, target),
);
} else {
return sema.addConstant(
resolved_type,
try lhs_val.floatDivFloor(rhs_val, resolved_type, sema.arena, target),
);
}
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
return block.addBinOp(airTag(block, is_int, .div_floor, .div_floor_optimized), casted_lhs, casted_rhs);
}
fn zirDivTrunc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison();
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison();
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty, .div_trunc);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType();
const rhs_scalar_ty = rhs_ty.scalarType();
const scalar_tag = resolved_type.scalarType().zigTypeTag();
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_trunc);
const mod = sema.mod;
const target = mod.getTarget();
const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(block, lhs_src, casted_lhs);
const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(block, rhs_src, casted_rhs);
const runtime_src = rs: {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef()) {
if (try lhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.addConstant(resolved_type, Value.zero);
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef()) {
if (lhs_scalar_ty.isSignedInt() and rhs_scalar_ty.isSignedInt()) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compare(block, src, rhs_val, .neq, Value.negative_one, resolved_type)) {
return sema.addConstUndef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return sema.addConstUndef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
return sema.addConstant(
resolved_type,
try lhs_val.intDiv(rhs_val, resolved_type, sema.arena, target),
);
} else {
return sema.addConstant(
resolved_type,
try lhs_val.floatDivTrunc(rhs_val, resolved_type, sema.arena, target),
);
}
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
return block.addBinOp(airTag(block, is_int, .div_trunc, .div_trunc_optimized), casted_lhs, casted_rhs);
}
fn addDivIntOverflowSafety(
sema: *Sema,
block: *Block,
resolved_type: Type,
lhs_scalar_ty: Type,
maybe_lhs_val: ?Value,
maybe_rhs_val: ?Value,
casted_lhs: Air.Inst.Ref,
casted_rhs: Air.Inst.Ref,
is_int: bool,
) CompileError!void {
if (!is_int) return;
// If the LHS is unsigned, it cannot cause overflow.
if (!lhs_scalar_ty.isSignedInt()) return;
const mod = sema.mod;
const target = mod.getTarget();
// If the LHS is widened to a larger integer type, no overflow is possible.
if (lhs_scalar_ty.intInfo(target).bits < resolved_type.intInfo(target).bits) {
return;
}
const min_int = try resolved_type.minInt(sema.arena, target);
const neg_one = try Value.Tag.int_i64.create(sema.arena, -1);
// If the LHS is comptime-known to be not equal to the min int,
// no overflow is possible.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.compare(.eq, min_int, resolved_type, mod)) return;
}
// If the RHS is comptime-known to not be equal to -1, no overflow is possible.
if (maybe_rhs_val) |rhs_val| {
if (!rhs_val.compare(.eq, neg_one, resolved_type, mod)) return;
}
var ok: Air.Inst.Ref = .none;
if (resolved_type.zigTypeTag() == .Vector) {
const vector_ty_ref = try sema.addType(resolved_type);
if (maybe_lhs_val == null) {
const min_int_ref = try sema.addConstant(
resolved_type,
try Value.Tag.repeated.create(sema.arena, min_int),
);
ok = try block.addCmpVector(casted_lhs, min_int_ref, .neq, vector_ty_ref);
}
if (maybe_rhs_val == null) {
const neg_one_ref = try sema.addConstant(
resolved_type,
try Value.Tag.repeated.create(sema.arena, neg_one),
);
const rhs_ok = try block.addCmpVector(casted_rhs, neg_one_ref, .neq, vector_ty_ref);
if (ok == .none) {
ok = rhs_ok;
} else {
ok = try block.addBinOp(.bool_or, ok, rhs_ok);
}
}
assert(ok != .none);
ok = try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else {
if (maybe_lhs_val == null) {
const min_int_ref = try sema.addConstant(resolved_type, min_int);
ok = try block.addBinOp(.cmp_neq, casted_lhs, min_int_ref);
}
if (maybe_rhs_val == null) {
const neg_one_ref = try sema.addConstant(resolved_type, neg_one);
const rhs_ok = try block.addBinOp(.cmp_neq, casted_rhs, neg_one_ref);
if (ok == .none) {
ok = rhs_ok;
} else {
ok = try block.addBinOp(.bool_or, ok, rhs_ok);
}
}
assert(ok != .none);
}
try sema.addSafetyCheck(block, ok, .integer_overflow);
}
fn addDivByZeroSafety(
sema: *Sema,
block: *Block,
resolved_type: Type,
maybe_rhs_val: ?Value,
casted_rhs: Air.Inst.Ref,
is_int: bool,
) CompileError!void {
// Strict IEEE floats have well-defined division by zero.
if (!is_int and block.float_mode == .Strict) return;
// If rhs was comptime-known to be zero a compile error would have been
// emitted above.
if (maybe_rhs_val != null) return;
const ok = if (resolved_type.zigTypeTag() == .Vector) ok: {
const zero_val = try Value.Tag.repeated.create(sema.arena, Value.zero);
const zero = try sema.addConstant(resolved_type, zero_val);
const ok = try block.addCmpVector(casted_rhs, zero, .neq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = if (is_int) .reduce else .reduce_optimized,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else ok: {
const zero = try sema.addConstant(resolved_type, Value.zero);
break :ok try block.addBinOp(if (is_int) .cmp_neq else .cmp_neq_optimized, casted_rhs, zero);
};
try sema.addSafetyCheck(block, ok, .divide_by_zero);
}
fn airTag(block: *Block, is_int: bool, normal: Air.Inst.Tag, optimized: Air.Inst.Tag) Air.Inst.Tag {
if (is_int) return normal;
return switch (block.float_mode) {
@ -11423,13 +11819,8 @@ fn analyzeArithmetic(
const scalar_tag = resolved_type.scalarType().zigTypeTag();
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
const is_float = scalar_tag == .Float or scalar_tag == .ComptimeFloat;
if (!is_int and !(is_float and floatOpAllowed(zir_tag))) {
return sema.fail(block, src, "invalid operands to binary expression: '{s}' and '{s}'", .{
@tagName(lhs_zig_ty_tag), @tagName(rhs_zig_ty_tag),
});
}
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, zir_tag);
const mod = sema.mod;
const target = mod.getTarget();
@ -11636,187 +12027,6 @@ fn analyzeArithmetic(
} else break :rs .{ .src = rhs_src, .air_tag = .sub_sat };
} else break :rs .{ .src = lhs_src, .air_tag = .sub_sat };
},
.div_trunc => {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef()) {
if (try lhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.addConstant(resolved_type, Value.zero);
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
const air_tag: Air.Inst.Tag = if (block.float_mode == .Optimized) .div_trunc_optimized else .div_trunc;
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef()) {
if (lhs_scalar_ty.isSignedInt() and rhs_scalar_ty.isSignedInt()) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compare(block, src, rhs_val, .neq, Value.negative_one, resolved_type)) {
return sema.addConstUndef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return sema.addConstUndef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
return sema.addConstant(
resolved_type,
try lhs_val.intDiv(rhs_val, resolved_type, sema.arena, target),
);
} else {
return sema.addConstant(
resolved_type,
try lhs_val.floatDivTrunc(rhs_val, resolved_type, sema.arena, target),
);
}
} else break :rs .{ .src = rhs_src, .air_tag = air_tag };
} else break :rs .{ .src = lhs_src, .air_tag = air_tag };
},
.div_floor => {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef()) {
if (try lhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.addConstant(resolved_type, Value.zero);
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
const air_tag: Air.Inst.Tag = if (block.float_mode == .Optimized) .div_floor_optimized else .div_floor;
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef()) {
if (lhs_scalar_ty.isSignedInt() and rhs_scalar_ty.isSignedInt()) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compare(block, src, rhs_val, .neq, Value.negative_one, resolved_type)) {
return sema.addConstUndef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return sema.addConstUndef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
return sema.addConstant(
resolved_type,
try lhs_val.intDivFloor(rhs_val, resolved_type, sema.arena, target),
);
} else {
return sema.addConstant(
resolved_type,
try lhs_val.floatDivFloor(rhs_val, resolved_type, sema.arena, target),
);
}
} else break :rs .{ .src = rhs_src, .air_tag = air_tag };
} else break :rs .{ .src = lhs_src, .air_tag = air_tag };
},
.div_exact => {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, compile error because there is a possible
// value for which the division would result in a remainder.
// TODO: emit runtime safety for if there is a remainder
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, compile error because there is a possible
// value for which the division would result in a remainder.
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
} else {
if (try lhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.addConstant(resolved_type, Value.zero);
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef()) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (try rhs_val.compareWithZeroAdvanced(.eq, sema.kit(block, src))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
const air_tag: Air.Inst.Tag = if (block.float_mode == .Optimized) .div_exact_optimized else .div_exact;
if (maybe_lhs_val) |lhs_val| {
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
// TODO: emit compile error if there is a remainder
return sema.addConstant(
resolved_type,
try lhs_val.intDiv(rhs_val, resolved_type, sema.arena, target),
);
} else {
// TODO: emit compile error if there is a remainder
return sema.addConstant(
resolved_type,
try lhs_val.floatDiv(rhs_val, resolved_type, sema.arena, target),
);
}
} else break :rs .{ .src = rhs_src, .air_tag = air_tag };
} else break :rs .{ .src = lhs_src, .air_tag = air_tag };
},
.mul => {
// For integers:
// If either of the operands are zero, the result is zero.
@ -12195,28 +12405,6 @@ fn analyzeArithmetic(
}
}
switch (rs.air_tag) {
// zig fmt: off
.div_float, .div_exact, .div_trunc, .div_floor, .div_float_optimized,
.div_exact_optimized, .div_trunc_optimized, .div_floor_optimized
// zig fmt: on
=> if (scalar_tag == .Int or block.float_mode == .Optimized) {
const ok = if (resolved_type.zigTypeTag() == .Vector) ok: {
const zero_val = try Value.Tag.repeated.create(sema.arena, Value.zero);
const zero = try sema.addConstant(sema.typeOf(casted_rhs), zero_val);
const ok = try block.addCmpVector(casted_rhs, zero, .neq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else ok: {
const zero = try sema.addConstant(sema.typeOf(casted_rhs), Value.zero);
break :ok try block.addBinOp(if (block.float_mode == .Optimized) .cmp_neq_optimized else .cmp_neq, casted_rhs, zero);
};
try sema.addSafetyCheck(block, ok, .divide_by_zero);
},
.rem, .mod, .rem_optimized, .mod_optimized => {
const ok = if (resolved_type.zigTypeTag() == .Vector) ok: {
const zero_val = try Value.Tag.repeated.create(sema.arena, Value.zero);
@ -12243,47 +12431,6 @@ fn analyzeArithmetic(
},
else => {},
}
if (rs.air_tag == .div_exact or rs.air_tag == .div_exact_optimized) {
const result = try block.addBinOp(.div_exact, casted_lhs, casted_rhs);
const ok = if (scalar_tag == .Float) ok: {
const floored = try block.addUnOp(.floor, result);
if (resolved_type.zigTypeTag() == .Vector) {
const eql = try block.addCmpVector(result, floored, .eq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else {
const is_in_range = try block.addBinOp(if (block.float_mode == .Optimized) .cmp_eq_optimized else .cmp_eq, result, floored);
break :ok is_in_range;
}
} else ok: {
const remainder = try block.addBinOp(.rem, casted_lhs, casted_rhs);
if (resolved_type.zigTypeTag() == .Vector) {
const zero_val = try Value.Tag.repeated.create(sema.arena, Value.zero);
const zero = try sema.addConstant(sema.typeOf(casted_rhs), zero_val);
const eql = try block.addCmpVector(remainder, zero, .eq, try sema.addType(resolved_type));
break :ok try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else {
const zero = try sema.addConstant(sema.typeOf(casted_rhs), Value.zero);
const is_in_range = try block.addBinOp(if (block.float_mode == .Optimized) .cmp_eq_optimized else .cmp_eq, remainder, zero);
break :ok is_in_range;
}
};
try sema.addSafetyCheck(block, ok, .exact_division_remainder);
return result;
}
}
return block.addBinOp(rs.air_tag, casted_lhs, casted_rhs);
}