mirror of
https://github.com/ziglang/zig.git
synced 2025-12-12 17:23:09 +00:00
Merge pull request #16840 from e4m2/rand-int
std.rand: Support integers with >64 bits in more functions
This commit is contained in:
commit
3d6e633371
@ -113,22 +113,16 @@ pub const Random = struct {
|
||||
// TODO: endian portability is pointless if the underlying prng isn't endian portable.
|
||||
// TODO: document the endian portability of this library.
|
||||
const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes);
|
||||
const unsigned_result = @as(UnsignedT, @truncate(byte_aligned_result));
|
||||
return @as(T, @bitCast(unsigned_result));
|
||||
const unsigned_result: UnsignedT = @truncate(byte_aligned_result);
|
||||
return @bitCast(unsigned_result);
|
||||
}
|
||||
|
||||
/// Constant-time implementation off `uintLessThan`.
|
||||
/// The results of this function may be biased.
|
||||
pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
|
||||
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
||||
const bits = @typeInfo(T).Int.bits;
|
||||
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
|
||||
assert(0 < less_than);
|
||||
if (bits <= 32) {
|
||||
return @as(T, @intCast(limitRangeBiased(u32, r.int(u32), less_than)));
|
||||
} else {
|
||||
return @as(T, @intCast(limitRangeBiased(u64, r.int(u64), less_than)));
|
||||
}
|
||||
return limitRangeBiased(T, r.int(T), less_than);
|
||||
}
|
||||
|
||||
/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
|
||||
@ -142,22 +136,16 @@ pub const Random = struct {
|
||||
pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
|
||||
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
||||
const bits = @typeInfo(T).Int.bits;
|
||||
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
|
||||
assert(0 < less_than);
|
||||
// Small is typically u32
|
||||
const small_bits = @divTrunc(bits + 31, 32) * 32;
|
||||
const Small = std.meta.Int(.unsigned, small_bits);
|
||||
// Large is typically u64
|
||||
const Large = std.meta.Int(.unsigned, small_bits * 2);
|
||||
|
||||
// adapted from:
|
||||
// http://www.pcg-random.org/posts/bounded-rands.html
|
||||
// "Lemire's (with an extra tweak from me)"
|
||||
var x: Small = r.int(Small);
|
||||
var m: Large = @as(Large, x) * @as(Large, less_than);
|
||||
var l: Small = @as(Small, @truncate(m));
|
||||
var x = r.int(T);
|
||||
var m = math.mulWide(T, x, less_than);
|
||||
var l: T = @truncate(m);
|
||||
if (l < less_than) {
|
||||
var t: Small = -%less_than;
|
||||
var t = -%less_than;
|
||||
|
||||
if (t >= less_than) {
|
||||
t -= less_than;
|
||||
@ -166,12 +154,12 @@ pub const Random = struct {
|
||||
}
|
||||
}
|
||||
while (l < t) {
|
||||
x = r.int(Small);
|
||||
m = @as(Large, x) * @as(Large, less_than);
|
||||
l = @as(Small, @truncate(m));
|
||||
x = r.int(T);
|
||||
m = math.mulWide(T, x, less_than);
|
||||
l = @truncate(m);
|
||||
}
|
||||
}
|
||||
return @as(T, @intCast(m >> small_bits));
|
||||
return @intCast(m >> bits);
|
||||
}
|
||||
|
||||
/// Constant-time implementation off `uintAtMost`.
|
||||
@ -205,10 +193,10 @@ pub const Random = struct {
|
||||
if (info.signedness == .signed) {
|
||||
// Two's complement makes this math pretty easy.
|
||||
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
||||
const lo = @as(UnsignedT, @bitCast(at_least));
|
||||
const hi = @as(UnsignedT, @bitCast(less_than));
|
||||
const lo: UnsignedT = @bitCast(at_least);
|
||||
const hi: UnsignedT = @bitCast(less_than);
|
||||
const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
|
||||
return @as(T, @bitCast(result));
|
||||
return @bitCast(result);
|
||||
} else {
|
||||
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
||||
return at_least + r.uintLessThanBiased(T, less_than - at_least);
|
||||
@ -224,10 +212,10 @@ pub const Random = struct {
|
||||
if (info.signedness == .signed) {
|
||||
// Two's complement makes this math pretty easy.
|
||||
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
||||
const lo = @as(UnsignedT, @bitCast(at_least));
|
||||
const hi = @as(UnsignedT, @bitCast(less_than));
|
||||
const lo: UnsignedT = @bitCast(at_least);
|
||||
const hi: UnsignedT = @bitCast(less_than);
|
||||
const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
|
||||
return @as(T, @bitCast(result));
|
||||
return @bitCast(result);
|
||||
} else {
|
||||
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
||||
return at_least + r.uintLessThan(T, less_than - at_least);
|
||||
@ -242,10 +230,10 @@ pub const Random = struct {
|
||||
if (info.signedness == .signed) {
|
||||
// Two's complement makes this math pretty easy.
|
||||
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
||||
const lo = @as(UnsignedT, @bitCast(at_least));
|
||||
const hi = @as(UnsignedT, @bitCast(at_most));
|
||||
const lo: UnsignedT = @bitCast(at_least);
|
||||
const hi: UnsignedT = @bitCast(at_most);
|
||||
const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
|
||||
return @as(T, @bitCast(result));
|
||||
return @bitCast(result);
|
||||
} else {
|
||||
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
||||
return at_least + r.uintAtMostBiased(T, at_most - at_least);
|
||||
@ -261,10 +249,10 @@ pub const Random = struct {
|
||||
if (info.signedness == .signed) {
|
||||
// Two's complement makes this math pretty easy.
|
||||
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
||||
const lo = @as(UnsignedT, @bitCast(at_least));
|
||||
const hi = @as(UnsignedT, @bitCast(at_most));
|
||||
const lo: UnsignedT = @bitCast(at_least);
|
||||
const hi: UnsignedT = @bitCast(at_most);
|
||||
const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
|
||||
return @as(T, @bitCast(result));
|
||||
return @bitCast(result);
|
||||
} else {
|
||||
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
||||
return at_least + r.uintAtMost(T, at_most - at_least);
|
||||
@ -293,9 +281,9 @@ pub const Random = struct {
|
||||
rand_lz += @clz(r.int(u32) | 0x7FF);
|
||||
}
|
||||
}
|
||||
const mantissa = @as(u23, @truncate(rand));
|
||||
const mantissa: u23 = @truncate(rand);
|
||||
const exponent = @as(u32, 126 - rand_lz) << 23;
|
||||
return @as(f32, @bitCast(exponent | mantissa));
|
||||
return @bitCast(exponent | mantissa);
|
||||
},
|
||||
f64 => {
|
||||
// Use 52 random bits for the mantissa, and the rest for the exponent.
|
||||
@ -320,7 +308,7 @@ pub const Random = struct {
|
||||
}
|
||||
const mantissa = rand & 0xFFFFFFFFFFFFF;
|
||||
const exponent = (1022 - rand_lz) << 52;
|
||||
return @as(f64, @bitCast(exponent | mantissa));
|
||||
return @bitCast(exponent | mantissa);
|
||||
},
|
||||
else => @compileError("unknown floating point type"),
|
||||
}
|
||||
@ -332,7 +320,7 @@ pub const Random = struct {
|
||||
pub fn floatNorm(r: Random, comptime T: type) T {
|
||||
const value = ziggurat.next_f64(r, ziggurat.NormDist);
|
||||
switch (T) {
|
||||
f32 => return @as(f32, @floatCast(value)),
|
||||
f32 => return @floatCast(value),
|
||||
f64 => return value,
|
||||
else => @compileError("unknown floating point type"),
|
||||
}
|
||||
@ -344,7 +332,7 @@ pub const Random = struct {
|
||||
pub fn floatExp(r: Random, comptime T: type) T {
|
||||
const value = ziggurat.next_f64(r, ziggurat.ExpDist);
|
||||
switch (T) {
|
||||
f32 => return @as(f32, @floatCast(value)),
|
||||
f32 => return @floatCast(value),
|
||||
f64 => return value,
|
||||
else => @compileError("unknown floating point type"),
|
||||
}
|
||||
@ -378,10 +366,10 @@ pub const Random = struct {
|
||||
}
|
||||
|
||||
// `i <= j < max <= maxInt(MinInt)`
|
||||
const max = @as(MinInt, @intCast(buf.len));
|
||||
const max: MinInt = @intCast(buf.len);
|
||||
var i: MinInt = 0;
|
||||
while (i < max - 1) : (i += 1) {
|
||||
const j = @as(MinInt, @intCast(r.intRangeLessThan(Index, i, max)));
|
||||
const j: MinInt = @intCast(r.intRangeLessThan(Index, i, max));
|
||||
mem.swap(T, &buf[i], &buf[j]);
|
||||
}
|
||||
}
|
||||
@ -438,13 +426,12 @@ pub const Random = struct {
|
||||
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
|
||||
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
||||
const bits = @typeInfo(T).Int.bits;
|
||||
const T2 = std.meta.Int(.unsigned, bits * 2);
|
||||
|
||||
// adapted from:
|
||||
// http://www.pcg-random.org/posts/bounded-rands.html
|
||||
// "Integer Multiplication (Biased)"
|
||||
var m: T2 = @as(T2, random_int) * @as(T2, less_than);
|
||||
return @as(T, @intCast(m >> bits));
|
||||
const m = math.mulWide(T, random_int, less_than);
|
||||
return @intCast(m >> bits);
|
||||
}
|
||||
|
||||
// Generator to extend 64-bit seed values into longer sequences.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user