EventLoop: move context after the async closure

This avoids needing to store more sizes and alignments.  Only the result
alignment needs to be stored, because `Fiber` is at a fixed zero offset.
This commit is contained in:
Jacob Young 2025-03-28 10:05:52 -04:00 committed by Andrew Kelley
parent dfbf68e5fa
commit 2f2019645c

View File

@ -4,28 +4,23 @@ const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Io = std.Io;
const EventLoop = @This();
const Alignment = std.mem.Alignment;
gpa: Allocator,
mutex: std.Thread.Mutex,
cond: std.Thread.Condition,
queue: std.DoublyLinkedList(void),
free: std.DoublyLinkedList(void),
main_fiber_buffer: [@sizeOf(Fiber) + max_result_len]u8 align(@alignOf(Fiber)),
main_context: Context,
exit_awaiter: ?*Fiber,
idle_count: usize,
threads: std.ArrayListUnmanaged(Thread),
threadlocal var current_idle_context: *Context = undefined;
threadlocal var current_fiber_context: *Context = undefined;
threadlocal var current_context: *Context = undefined;
/// Also used for context.
const max_result_len = 64;
/// Also used for context.
const max_result_align: std.mem.Alignment = .@"16";
const min_stack_size = 4 * 1024 * 1024;
/// Empirically saw 10KB being used by the self-hosted backend for logging.
const idle_stack_size = 32 * 1024;
const stack_align = 16;
const Thread = struct {
thread: std.Thread,
@ -33,45 +28,53 @@ const Thread = struct {
};
const Fiber = struct {
_: void align(max_result_align.toByteUnits()) = {},
context: Context,
awaiter: ?*Fiber,
queue_node: std.DoublyLinkedList(void).Node,
result_align: Alignment,
const finished: ?*Fiber = @ptrFromInt(std.mem.alignBackward(usize, std.math.maxInt(usize), @alignOf(Fiber)));
fn allocatedSlice(f: *Fiber) []align(@alignOf(Fiber)) u8 {
const base: [*]align(@alignOf(Fiber)) u8 = @ptrCast(f);
return base[0..std.mem.alignForward(
const max_result_align: Alignment = .@"16";
const max_result_size = max_result_align.forward(64);
/// This includes any stack realignments that need to happen, and also the
/// initial frame return address slot and argument frame, depending on target.
const min_stack_size = 4 * 1024 * 1024;
const max_context_align: Alignment = .@"16";
const max_context_size = max_context_align.forward(1024);
const allocation_size = std.mem.alignForward(
usize,
std.mem.alignForward(
usize,
resultOffset() + max_result_len + min_stack_size,
std.heap.page_size_max,
)];
max_result_align.forward(@sizeOf(Fiber)) + max_result_size + min_stack_size,
@max(@alignOf(AsyncClosure), max_context_align.toByteUnits()),
) + @sizeOf(AsyncClosure) + max_context_size,
std.heap.page_size_max,
);
fn allocate(el: *EventLoop) error{OutOfMemory}!*Fiber {
return if (free_node: {
el.mutex.lock();
defer el.mutex.unlock();
break :free_node el.free.pop();
}) |free_node|
@alignCast(@fieldParentPtr("queue_node", free_node))
else
@ptrCast(try el.gpa.alignedAlloc(u8, @alignOf(Fiber), allocation_size));
}
fn argsOffset() usize {
return max_result_align.forward(@sizeOf(Fiber));
fn allocatedSlice(f: *Fiber) []align(@alignOf(Fiber)) u8 {
return @as([*]align(@alignOf(Fiber)) u8, @ptrCast(f))[0..allocation_size];
}
fn resultOffset() usize {
return max_result_align.forward(argsOffset() + max_result_len);
}
fn argsSlice(f: *Fiber) []u8 {
const base: [*]align(@alignOf(Fiber)) u8 = @ptrCast(f);
return base[argsOffset()..][0..max_result_len];
}
fn resultSlice(f: *Fiber) []u8 {
const base: [*]align(@alignOf(Fiber)) u8 = @ptrCast(f);
return base[resultOffset()..][0..max_result_len];
}
fn stackEndPointer(f: *Fiber) [*]u8 {
fn allocatedEnd(f: *Fiber) [*]u8 {
const allocated_slice = f.allocatedSlice();
return allocated_slice[allocated_slice.len..].ptr;
}
fn resultPointer(f: *Fiber) [*]u8 {
return @ptrFromInt(f.result_align.forward(@intFromPtr(f) + @sizeOf(Fiber)));
}
};
pub fn io(el: *EventLoop) Io {
@ -88,7 +91,7 @@ pub fn init(el: *EventLoop, gpa: Allocator) error{OutOfMemory}!void {
const threads_bytes = ((std.Thread.getCpuCount() catch 1) -| 1) * @sizeOf(Thread);
const idle_context_offset = std.mem.alignForward(usize, threads_bytes, @alignOf(Context));
const idle_stack_end_offset = std.mem.alignForward(usize, idle_context_offset + idle_stack_size, std.heap.page_size_max);
const allocated_slice = try gpa.alignedAlloc(u8, @max(@alignOf(Thread), @alignOf(Context), stack_align), idle_stack_end_offset);
const allocated_slice = try gpa.alignedAlloc(u8, @max(@alignOf(Thread), @alignOf(Context)), idle_stack_end_offset);
errdefer gpa.free(allocated_slice);
el.* = .{
.gpa = gpa,
@ -96,13 +99,13 @@ pub fn init(el: *EventLoop, gpa: Allocator) error{OutOfMemory}!void {
.cond = .{},
.queue = .{},
.free = .{},
.main_fiber_buffer = undefined,
.main_context = undefined,
.exit_awaiter = null,
.idle_count = 0,
.threads = .initBuffer(@ptrCast(allocated_slice[0..threads_bytes])),
};
const main_idle_context: *Context = @alignCast(std.mem.bytesAsValue(Context, allocated_slice[idle_context_offset..][0..@sizeOf(Context)]));
const idle_stack_end: [*]align(stack_align) usize = @alignCast(@ptrCast(allocated_slice[idle_stack_end_offset..].ptr));
const idle_stack_end: [*]align(@max(@alignOf(Thread), @alignOf(Context))) usize = @alignCast(@ptrCast(allocated_slice[idle_stack_end_offset..].ptr));
(idle_stack_end - 1)[0..1].* = .{@intFromPtr(el)};
main_idle_context.* = .{
.rsp = @intFromPtr(idle_stack_end - 1),
@ -111,9 +114,8 @@ pub fn init(el: *EventLoop, gpa: Allocator) error{OutOfMemory}!void {
};
std.log.debug("created main idle {*}", .{main_idle_context});
current_idle_context = main_idle_context;
const current_fiber: *Fiber = @ptrCast(&el.main_fiber_buffer);
std.log.debug("created main fiber {*}", .{current_fiber});
current_fiber_context = &current_fiber.context;
std.log.debug("created main {*}", .{&el.main_context});
current_context = &el.main_context;
}
pub fn deinit(el: *EventLoop) void {
@ -125,27 +127,11 @@ pub fn deinit(el: *EventLoop) void {
}
const idle_context_offset = std.mem.alignForward(usize, el.threads.items.len * @sizeOf(Thread), @alignOf(Context));
const idle_stack_end = std.mem.alignForward(usize, idle_context_offset + idle_stack_size, std.heap.page_size_max);
const allocated_ptr: [*]align(@max(@alignOf(Thread), @alignOf(Context), stack_align)) u8 = @alignCast(@ptrCast(el.threads.items.ptr));
const allocated_ptr: [*]align(@max(@alignOf(Thread), @alignOf(Context))) u8 = @alignCast(@ptrCast(el.threads.items.ptr));
for (el.threads.items) |*thread| thread.thread.join();
el.gpa.free(allocated_ptr[0..idle_stack_end]);
}
fn allocateFiber(el: *EventLoop) error{OutOfMemory}!*Fiber {
const free_node = free_node: {
el.mutex.lock();
defer el.mutex.unlock();
break :free_node el.free.pop();
} orelse {
const n = std.mem.alignForward(
usize,
Fiber.resultOffset() + max_result_len + min_stack_size,
std.heap.page_size_max,
);
return @alignCast(@ptrCast(try el.gpa.alignedAlloc(u8, @alignOf(Fiber), n)));
};
return @alignCast(@fieldParentPtr("queue_node", free_node));
}
fn yield(el: *EventLoop, optional_fiber: ?*Fiber, register_awaiter: ?*?*Fiber) void {
const ready_context: *Context = ready_context: {
const ready_fiber: *Fiber = optional_fiber orelse if (ready_node: {
@ -159,7 +145,7 @@ fn yield(el: *EventLoop, optional_fiber: ?*Fiber, register_awaiter: ?*?*Fiber) v
break :ready_context &ready_fiber.context;
};
const message: SwitchMessage = .{
.prev_context = current_fiber_context,
.prev_context = current_context,
.ready_context = ready_context,
.register_awaiter = register_awaiter,
};
@ -189,14 +175,13 @@ fn schedule(el: *EventLoop, fiber: *Fiber) void {
fn recycle(el: *EventLoop, fiber: *Fiber) void {
std.log.debug("recyling {*}", .{fiber});
fiber.awaiter = undefined;
@memset(fiber.resultSlice(), undefined);
@memset(fiber.allocatedSlice(), undefined);
el.mutex.lock();
defer el.mutex.unlock();
el.free.append(&fiber.queue_node);
}
fn mainIdle(el: *EventLoop, message: *const SwitchMessage) callconv(.c) noreturn {
fn mainIdle(el: *EventLoop, message: *const SwitchMessage) callconv(.withStackAlign(.c, @max(@alignOf(Thread), @alignOf(Context)))) noreturn {
message.handle(el);
el.yield(el.idle(), null);
unreachable; // switched to dead fiber
@ -205,7 +190,7 @@ fn mainIdle(el: *EventLoop, message: *const SwitchMessage) callconv(.c) noreturn
fn threadEntry(el: *EventLoop, thread: *Thread) void {
std.log.debug("created thread idle {*}", .{&thread.idle_context});
current_idle_context = &thread.idle_context;
current_fiber_context = &thread.idle_context;
current_context = &thread.idle_context;
_ = el.idle();
}
@ -230,7 +215,7 @@ const SwitchMessage = extern struct {
register_awaiter: ?*?*Fiber,
fn handle(message: *const SwitchMessage, el: *EventLoop) void {
current_fiber_context = message.ready_context;
current_context = message.ready_context;
if (message.register_awaiter) |awaiter| {
const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.prev_context));
if (@atomicRmw(?*Fiber, awaiter, .Xchg, prev_fiber, .acq_rel) == Fiber.finished) el.schedule(prev_fiber);
@ -238,10 +223,13 @@ const SwitchMessage = extern struct {
}
};
const Context = extern struct {
rsp: usize,
rbp: usize,
rip: usize,
const Context = switch (builtin.cpu.arch) {
.x86_64 => extern struct {
rsp: u64,
rbp: u64,
rip: u64,
},
else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)),
};
inline fn contextSwitch(message: *const SwitchMessage) *const SwitchMessage {
@ -299,42 +287,45 @@ fn fiberEntry() callconv(.naked) void {
pub fn @"async"(
userdata: ?*anyopaque,
result: []u8,
result_alignment: std.mem.Alignment,
result_alignment: Alignment,
context: []const u8,
context_alignment: std.mem.Alignment,
context_alignment: Alignment,
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
) ?*std.Io.AnyFuture {
assert(result_alignment.compare(.lte, max_result_align)); // TODO
assert(context_alignment.compare(.lte, max_result_align)); // TODO
assert(result.len <= max_result_len); // TODO
assert(context.len <= max_result_len); // TODO
assert(result_alignment.compare(.lte, Fiber.max_result_align)); // TODO
assert(context_alignment.compare(.lte, Fiber.max_context_align)); // TODO
assert(result.len <= Fiber.max_result_size); // TODO
assert(context.len <= Fiber.max_context_size); // TODO
const event_loop: *EventLoop = @alignCast(@ptrCast(userdata));
const fiber = event_loop.allocateFiber() catch {
const fiber = Fiber.allocate(event_loop) catch {
start(context.ptr, result.ptr);
return null;
};
fiber.awaiter = null;
fiber.queue_node = .{ .data = {} };
@memcpy(fiber.argsSlice()[0..context.len], context);
std.log.debug("allocated {*}", .{fiber});
const closure: *AsyncClosure = @ptrFromInt(std.mem.alignBackward(
usize,
@intFromPtr(fiber.stackEndPointer() - @sizeOf(AsyncClosure)),
@max(@alignOf(AsyncClosure), stack_align),
));
const closure: *AsyncClosure = @ptrFromInt(Fiber.max_context_align.max(.of(AsyncClosure)).backward(
@intFromPtr(fiber.allocatedEnd()) - Fiber.max_context_size,
) - @sizeOf(AsyncClosure));
fiber.* = .{
.context = switch (builtin.cpu.arch) {
.x86_64 => .{
.rsp = @intFromPtr(closure) - @sizeOf(usize),
.rbp = 0,
.rip = @intFromPtr(&fiberEntry),
},
else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)),
},
.awaiter = null,
.queue_node = undefined,
.result_align = result_alignment,
};
closure.* = .{
.event_loop = event_loop,
.fiber = fiber,
.start = start,
};
const stack_end: [*]align(stack_align) usize = @alignCast(@ptrCast(closure));
fiber.context = .{
.rsp = @intFromPtr(stack_end - 1),
.rbp = 0,
.rip = @intFromPtr(&fiberEntry),
};
@memcpy(closure.contextPointer(), context);
event_loop.schedule(fiber);
return @ptrCast(fiber);
@ -345,10 +336,14 @@ const AsyncClosure = struct {
fiber: *Fiber,
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
fn call(closure: *AsyncClosure, message: *const SwitchMessage) callconv(.c) noreturn {
fn contextPointer(closure: *AsyncClosure) [*]align(Fiber.max_context_align.toByteUnits()) u8 {
return @alignCast(@as([*]u8, @ptrCast(closure)) + @sizeOf(AsyncClosure));
}
fn call(closure: *AsyncClosure, message: *const SwitchMessage) callconv(.withStackAlign(.c, @alignOf(AsyncClosure))) noreturn {
message.handle(closure.event_loop);
std.log.debug("{*} performing async", .{closure.fiber});
closure.start(closure.fiber.argsSlice().ptr, closure.fiber.resultSlice().ptr);
closure.start(closure.contextPointer(), closure.fiber.resultPointer());
const awaiter = @atomicRmw(?*Fiber, &closure.fiber.awaiter, .Xchg, Fiber.finished, .acq_rel);
closure.event_loop.yield(awaiter, null);
unreachable; // switched to dead fiber
@ -358,8 +353,7 @@ const AsyncClosure = struct {
pub fn @"await"(userdata: ?*anyopaque, any_future: *std.Io.AnyFuture, result: []u8) void {
const event_loop: *EventLoop = @alignCast(@ptrCast(userdata));
const future_fiber: *Fiber = @alignCast(@ptrCast(any_future));
const result_src = future_fiber.resultSlice()[0..result.len];
if (@atomicLoad(?*Fiber, &future_fiber.awaiter, .acquire) != Fiber.finished) event_loop.yield(null, &future_fiber.awaiter);
@memcpy(result, result_src);
@memcpy(result, future_fiber.resultPointer());
event_loop.recycle(future_fiber);
}