diff --git a/lib/std/rand.zig b/lib/std/rand.zig index 01bf46102e..c573a94d61 100644 --- a/lib/std/rand.zig +++ b/lib/std/rand.zig @@ -113,8 +113,8 @@ pub const Random = struct { // TODO: endian portability is pointless if the underlying prng isn't endian portable. // TODO: document the endian portability of this library. const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes); - const unsigned_result = @as(UnsignedT, @truncate(byte_aligned_result)); - return @as(T, @bitCast(unsigned_result)); + const unsigned_result: UnsignedT = @truncate(byte_aligned_result); + return @bitCast(unsigned_result); } /// Constant-time implementation off `uintLessThan`. @@ -193,10 +193,10 @@ pub const Random = struct { if (info.signedness == .signed) { // Two's complement makes this math pretty easy. const UnsignedT = std.meta.Int(.unsigned, info.bits); - const lo = @as(UnsignedT, @bitCast(at_least)); - const hi = @as(UnsignedT, @bitCast(less_than)); + const lo: UnsignedT = @bitCast(at_least); + const hi: UnsignedT = @bitCast(less_than); const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo); - return @as(T, @bitCast(result)); + return @bitCast(result); } else { // The signed implementation would work fine, but we can use stricter arithmetic operators here. return at_least + r.uintLessThanBiased(T, less_than - at_least); @@ -212,10 +212,10 @@ pub const Random = struct { if (info.signedness == .signed) { // Two's complement makes this math pretty easy. const UnsignedT = std.meta.Int(.unsigned, info.bits); - const lo = @as(UnsignedT, @bitCast(at_least)); - const hi = @as(UnsignedT, @bitCast(less_than)); + const lo: UnsignedT = @bitCast(at_least); + const hi: UnsignedT = @bitCast(less_than); const result = lo +% r.uintLessThan(UnsignedT, hi -% lo); - return @as(T, @bitCast(result)); + return @bitCast(result); } else { // The signed implementation would work fine, but we can use stricter arithmetic operators here. return at_least + r.uintLessThan(T, less_than - at_least); @@ -230,10 +230,10 @@ pub const Random = struct { if (info.signedness == .signed) { // Two's complement makes this math pretty easy. const UnsignedT = std.meta.Int(.unsigned, info.bits); - const lo = @as(UnsignedT, @bitCast(at_least)); - const hi = @as(UnsignedT, @bitCast(at_most)); + const lo: UnsignedT = @bitCast(at_least); + const hi: UnsignedT = @bitCast(at_most); const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo); - return @as(T, @bitCast(result)); + return @bitCast(result); } else { // The signed implementation would work fine, but we can use stricter arithmetic operators here. return at_least + r.uintAtMostBiased(T, at_most - at_least); @@ -249,10 +249,10 @@ pub const Random = struct { if (info.signedness == .signed) { // Two's complement makes this math pretty easy. const UnsignedT = std.meta.Int(.unsigned, info.bits); - const lo = @as(UnsignedT, @bitCast(at_least)); - const hi = @as(UnsignedT, @bitCast(at_most)); + const lo: UnsignedT = @bitCast(at_least); + const hi: UnsignedT = @bitCast(at_most); const result = lo +% r.uintAtMost(UnsignedT, hi -% lo); - return @as(T, @bitCast(result)); + return @bitCast(result); } else { // The signed implementation would work fine, but we can use stricter arithmetic operators here. return at_least + r.uintAtMost(T, at_most - at_least); @@ -281,9 +281,9 @@ pub const Random = struct { rand_lz += @clz(r.int(u32) | 0x7FF); } } - const mantissa = @as(u23, @truncate(rand)); + const mantissa: u23 = @truncate(rand); const exponent = @as(u32, 126 - rand_lz) << 23; - return @as(f32, @bitCast(exponent | mantissa)); + return @bitCast(exponent | mantissa); }, f64 => { // Use 52 random bits for the mantissa, and the rest for the exponent. @@ -308,7 +308,7 @@ pub const Random = struct { } const mantissa = rand & 0xFFFFFFFFFFFFF; const exponent = (1022 - rand_lz) << 52; - return @as(f64, @bitCast(exponent | mantissa)); + return @bitCast(exponent | mantissa); }, else => @compileError("unknown floating point type"), } @@ -320,7 +320,7 @@ pub const Random = struct { pub fn floatNorm(r: Random, comptime T: type) T { const value = ziggurat.next_f64(r, ziggurat.NormDist); switch (T) { - f32 => return @as(f32, @floatCast(value)), + f32 => return @floatCast(value), f64 => return value, else => @compileError("unknown floating point type"), } @@ -332,7 +332,7 @@ pub const Random = struct { pub fn floatExp(r: Random, comptime T: type) T { const value = ziggurat.next_f64(r, ziggurat.ExpDist); switch (T) { - f32 => return @as(f32, @floatCast(value)), + f32 => return @floatCast(value), f64 => return value, else => @compileError("unknown floating point type"), } @@ -366,10 +366,10 @@ pub const Random = struct { } // `i <= j < max <= maxInt(MinInt)` - const max = @as(MinInt, @intCast(buf.len)); + const max: MinInt = @intCast(buf.len); var i: MinInt = 0; while (i < max - 1) : (i += 1) { - const j = @as(MinInt, @intCast(r.intRangeLessThan(Index, i, max))); + const j: MinInt = @intCast(r.intRangeLessThan(Index, i, max)); mem.swap(T, &buf[i], &buf[j]); } }