adjust runtime page size APIs

* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
  Allocator implementation defined
* fix non-inline function call in start logic

The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
This commit is contained in:
Andrew Kelley 2025-01-29 14:16:25 -08:00
parent 439667be04
commit 284de7d957
23 changed files with 723 additions and 718 deletions

View File

@ -480,7 +480,7 @@ pub const MemoryMappedList = struct {
/// of this ArrayList in accordance with the respective documentation. In
/// all cases, "invalidated" means that the memory has been passed to this
/// allocator's resize or free function.
items: []align(std.heap.min_page_size) volatile u8,
items: []align(std.heap.page_size_min) volatile u8,
/// How many bytes this list can hold without allocating additional memory.
capacity: usize,

View File

@ -41,7 +41,7 @@ const fuzzer_arch_os_abi = "wasm32-freestanding";
const fuzzer_cpu_features = "baseline+atomics+bulk_memory+multivalue+mutable_globals+nontrapping_fptoint+reference_types+sign_ext";
const CoverageMap = struct {
mapped_memory: []align(std.heap.min_page_size) const u8,
mapped_memory: []align(std.heap.page_size_min) const u8,
coverage: Coverage,
source_locations: []Coverage.SourceLocation,
/// Elements are indexes into `source_locations` pointing to the unit tests that are being fuzz tested.

View File

@ -1155,7 +1155,7 @@ const LinuxThreadImpl = struct {
completion: Completion = Completion.init(.running),
child_tid: std.atomic.Value(i32) = std.atomic.Value(i32).init(1),
parent_tid: i32 = undefined,
mapped: []align(std.heap.min_page_size) u8,
mapped: []align(std.heap.page_size_min) u8,
/// Calls `munmap(mapped.ptr, mapped.len)` then `exit(1)` without touching the stack (which lives in `mapped.ptr`).
/// Ported over from musl libc's pthread detached implementation:

View File

@ -3,7 +3,7 @@ const builtin = @import("builtin");
const c = @This();
const maxInt = std.math.maxInt;
const assert = std.debug.assert;
const min_page_size = std.heap.min_page_size;
const page_size = std.heap.page_size_min;
const native_abi = builtin.abi;
const native_arch = builtin.cpu.arch;
const native_os = builtin.os.tag;
@ -2229,7 +2229,7 @@ pub const SC = switch (native_os) {
};
pub const _SC = switch (native_os) {
.bridgeos, .driverkit, .ios, .macos, .tvos, .visionos, .watchos => enum(c_int) {
.driverkit, .ios, .macos, .tvos, .visionos, .watchos => enum(c_int) {
PAGESIZE = 29,
},
.dragonfly => enum(c_int) {
@ -9265,7 +9265,7 @@ pub extern "c" fn getpwnam(name: [*:0]const u8) ?*passwd;
pub extern "c" fn getpwuid(uid: uid_t) ?*passwd;
pub extern "c" fn getrlimit64(resource: rlimit_resource, rlim: *rlimit) c_int;
pub extern "c" fn lseek64(fd: fd_t, offset: i64, whence: c_int) i64;
pub extern "c" fn mmap64(addr: ?*align(min_page_size) anyopaque, len: usize, prot: c_uint, flags: c_uint, fd: fd_t, offset: i64) *anyopaque;
pub extern "c" fn mmap64(addr: ?*align(page_size) anyopaque, len: usize, prot: c_uint, flags: c_uint, fd: fd_t, offset: i64) *anyopaque;
pub extern "c" fn open64(path: [*:0]const u8, oflag: O, ...) c_int;
pub extern "c" fn openat64(fd: c_int, path: [*:0]const u8, oflag: O, ...) c_int;
pub extern "c" fn pread64(fd: fd_t, buf: [*]u8, nbyte: usize, offset: i64) isize;
@ -9357,13 +9357,13 @@ pub extern "c" fn signalfd(fd: fd_t, mask: *const sigset_t, flags: u32) c_int;
pub extern "c" fn prlimit(pid: pid_t, resource: rlimit_resource, new_limit: *const rlimit, old_limit: *rlimit) c_int;
pub extern "c" fn mincore(
addr: *align(min_page_size) anyopaque,
addr: *align(page_size) anyopaque,
length: usize,
vec: [*]u8,
) c_int;
pub extern "c" fn madvise(
addr: *align(min_page_size) anyopaque,
addr: *align(page_size) anyopaque,
length: usize,
advice: u32,
) c_int;
@ -9506,9 +9506,9 @@ pub extern "c" fn writev(fd: c_int, iov: [*]const iovec_const, iovcnt: c_uint) i
pub extern "c" fn pwritev(fd: c_int, iov: [*]const iovec_const, iovcnt: c_uint, offset: off_t) isize;
pub extern "c" fn write(fd: fd_t, buf: [*]const u8, nbyte: usize) isize;
pub extern "c" fn pwrite(fd: fd_t, buf: [*]const u8, nbyte: usize, offset: off_t) isize;
pub extern "c" fn mmap(addr: ?*align(min_page_size) anyopaque, len: usize, prot: c_uint, flags: MAP, fd: fd_t, offset: off_t) *anyopaque;
pub extern "c" fn munmap(addr: *align(min_page_size) const anyopaque, len: usize) c_int;
pub extern "c" fn mprotect(addr: *align(min_page_size) anyopaque, len: usize, prot: c_uint) c_int;
pub extern "c" fn mmap(addr: ?*align(page_size) anyopaque, len: usize, prot: c_uint, flags: MAP, fd: fd_t, offset: off_t) *anyopaque;
pub extern "c" fn munmap(addr: *align(page_size) const anyopaque, len: usize) c_int;
pub extern "c" fn mprotect(addr: *align(page_size) anyopaque, len: usize, prot: c_uint) c_int;
pub extern "c" fn link(oldpath: [*:0]const u8, newpath: [*:0]const u8) c_int;
pub extern "c" fn linkat(oldfd: fd_t, oldpath: [*:0]const u8, newfd: fd_t, newpath: [*:0]const u8, flags: c_int) c_int;
pub extern "c" fn unlink(path: [*:0]const u8) c_int;
@ -10191,7 +10191,7 @@ const private = struct {
};
extern "c" fn getrusage(who: c_int, usage: *rusage) c_int;
extern "c" fn gettimeofday(noalias tv: ?*timeval, noalias tz: ?*timezone) c_int;
extern "c" fn msync(addr: *align(min_page_size) const anyopaque, len: usize, flags: c_int) c_int;
extern "c" fn msync(addr: *align(page_size) const anyopaque, len: usize, flags: c_int) c_int;
extern "c" fn nanosleep(rqtp: *const timespec, rmtp: ?*timespec) c_int;
extern "c" fn pipe2(fds: *[2]fd_t, flags: O) c_int;
extern "c" fn readdir(dir: *DIR) ?*dirent;
@ -10239,7 +10239,7 @@ const private = struct {
extern "c" fn __getrusage50(who: c_int, usage: *rusage) c_int;
extern "c" fn __gettimeofday50(noalias tv: ?*timeval, noalias tz: ?*timezone) c_int;
extern "c" fn __libc_thr_yield() c_int;
extern "c" fn __msync13(addr: *align(min_page_size) const anyopaque, len: usize, flags: c_int) c_int;
extern "c" fn __msync13(addr: *align(page_size) const anyopaque, len: usize, flags: c_int) c_int;
extern "c" fn __nanosleep50(rqtp: *const timespec, rmtp: ?*timespec) c_int;
extern "c" fn __sigaction14(sig: c_int, noalias act: ?*const Sigaction, noalias oact: ?*Sigaction) c_int;
extern "c" fn __sigfillset14(set: ?*sigset_t) void;

View File

@ -6,7 +6,6 @@
const std = @import("std");
const builtin = @import("builtin");
const mem = std.mem;
const heap = std.heap;
const native_os = builtin.os.tag;
const posix = std.posix;
@ -43,7 +42,7 @@ var install_atfork_handler = std.once(struct {
}
}.do);
threadlocal var wipe_mem: []align(heap.min_page_size) u8 = &[_]u8{};
threadlocal var wipe_mem: []align(std.heap.page_size_min) u8 = &[_]u8{};
fn tlsCsprngFill(_: *anyopaque, buffer: []u8) void {
if (os_has_arc4random) {
@ -78,7 +77,7 @@ fn tlsCsprngFill(_: *anyopaque, buffer: []u8) void {
} else {
// Use a static thread-local buffer.
const S = struct {
threadlocal var buf: Context align(heap.min_page_size) = .{
threadlocal var buf: Context align(std.heap.page_size_min) = .{
.init_state = .uninitialized,
.rng = undefined,
};
@ -86,7 +85,7 @@ fn tlsCsprngFill(_: *anyopaque, buffer: []u8) void {
wipe_mem = mem.asBytes(&S.buf);
}
}
const ctx = @as(*Context, @ptrCast(wipe_mem.ptr));
const ctx: *Context = @ptrCast(wipe_mem.ptr);
switch (ctx.init_state) {
.uninitialized => {
@ -142,7 +141,7 @@ fn childAtForkHandler() callconv(.c) void {
}
fn fillWithCsprng(buffer: []u8) void {
const ctx = @as(*Context, @ptrCast(wipe_mem.ptr));
const ctx: *Context = @ptrCast(wipe_mem.ptr);
return ctx.rng.fill(buffer);
}
@ -158,7 +157,7 @@ fn initAndFill(buffer: []u8) void {
// the `std.options.cryptoRandomSeed` function is provided.
std.options.cryptoRandomSeed(&seed);
const ctx = @as(*Context, @ptrCast(wipe_mem.ptr));
const ctx: *Context = @ptrCast(wipe_mem.ptr);
ctx.rng = Rng.init(seed);
std.crypto.secureZero(u8, &seed);

View File

@ -2,7 +2,6 @@ const builtin = @import("builtin");
const std = @import("std.zig");
const math = std.math;
const mem = std.mem;
const heap = std.heap;
const io = std.io;
const posix = std.posix;
const fs = std.fs;
@ -1238,7 +1237,7 @@ test printLineFromFileAnyOs {
const overlap = 10;
var writer = file.writer();
try writer.writeByteNTimes('a', heap.min_page_size - overlap);
try writer.writeByteNTimes('a', std.heap.page_size_min - overlap);
try writer.writeByte('\n');
try writer.writeByteNTimes('a', overlap);
@ -1253,10 +1252,10 @@ test printLineFromFileAnyOs {
defer allocator.free(path);
var writer = file.writer();
try writer.writeByteNTimes('a', heap.max_page_size);
try writer.writeByteNTimes('a', std.heap.page_size_max);
try printLineFromFileAnyOs(output_stream, .{ .file_name = path, .line = 1, .column = 0 });
try expectEqualStrings(("a" ** heap.max_page_size) ++ "\n", output.items);
try expectEqualStrings(("a" ** std.heap.page_size_max) ++ "\n", output.items);
output.clearRetainingCapacity();
}
{
@ -1266,18 +1265,18 @@ test printLineFromFileAnyOs {
defer allocator.free(path);
var writer = file.writer();
try writer.writeByteNTimes('a', 3 * heap.max_page_size);
try writer.writeByteNTimes('a', 3 * std.heap.page_size_max);
try expectError(error.EndOfFile, printLineFromFileAnyOs(output_stream, .{ .file_name = path, .line = 2, .column = 0 }));
try printLineFromFileAnyOs(output_stream, .{ .file_name = path, .line = 1, .column = 0 });
try expectEqualStrings(("a" ** (3 * heap.max_page_size)) ++ "\n", output.items);
try expectEqualStrings(("a" ** (3 * std.heap.page_size_max)) ++ "\n", output.items);
output.clearRetainingCapacity();
try writer.writeAll("a\na");
try printLineFromFileAnyOs(output_stream, .{ .file_name = path, .line = 1, .column = 0 });
try expectEqualStrings(("a" ** (3 * heap.max_page_size)) ++ "a\n", output.items);
try expectEqualStrings(("a" ** (3 * std.heap.page_size_max)) ++ "a\n", output.items);
output.clearRetainingCapacity();
try printLineFromFileAnyOs(output_stream, .{ .file_name = path, .line = 2, .column = 0 });
@ -1291,7 +1290,7 @@ test printLineFromFileAnyOs {
defer allocator.free(path);
var writer = file.writer();
const real_file_start = 3 * heap.min_page_size;
const real_file_start = 3 * std.heap.page_size_min;
try writer.writeByteNTimes('\n', real_file_start);
try writer.writeAll("abc\ndef");

View File

@ -2120,8 +2120,8 @@ fn pcRelBase(field_ptr: usize, pc_rel_offset: i64) !usize {
pub const ElfModule = struct {
base_address: usize,
dwarf: Dwarf,
mapped_memory: []align(std.heap.min_page_size) const u8,
external_mapped_memory: ?[]align(std.heap.min_page_size) const u8,
mapped_memory: []align(std.heap.page_size_min) const u8,
external_mapped_memory: ?[]align(std.heap.page_size_min) const u8,
pub fn deinit(self: *@This(), allocator: Allocator) void {
self.dwarf.deinit(allocator);
@ -2167,11 +2167,11 @@ pub const ElfModule = struct {
/// sections from an external file.
pub fn load(
gpa: Allocator,
mapped_mem: []align(std.heap.min_page_size) const u8,
mapped_mem: []align(std.heap.page_size_min) const u8,
build_id: ?[]const u8,
expected_crc: ?u32,
parent_sections: *Dwarf.SectionArray,
parent_mapped_mem: ?[]align(std.heap.min_page_size) const u8,
parent_mapped_mem: ?[]align(std.heap.page_size_min) const u8,
elf_filename: ?[]const u8,
) LoadError!Dwarf.ElfModule {
if (expected_crc) |crc| if (crc != std.hash.crc.Crc32.hash(mapped_mem)) return error.InvalidDebugInfo;
@ -2423,7 +2423,7 @@ pub const ElfModule = struct {
build_id: ?[]const u8,
expected_crc: ?u32,
parent_sections: *Dwarf.SectionArray,
parent_mapped_mem: ?[]align(std.heap.min_page_size) const u8,
parent_mapped_mem: ?[]align(std.heap.page_size_min) const u8,
) LoadError!Dwarf.ElfModule {
const elf_file = elf_file_path.root_dir.handle.openFile(elf_file_path.sub_path, .{}) catch |err| switch (err) {
error.FileNotFound => return missing(),

View File

@ -7,7 +7,7 @@ const native_os = builtin.os.tag;
const std = @import("../std.zig");
const posix = std.posix;
const File = std.fs.File;
const min_page_size = std.heap.min_page_size;
const page_size_min = std.heap.page_size_min;
const MemoryAccessor = @This();
@ -96,7 +96,7 @@ pub fn isValidMemory(address: usize) bool {
const page_size = std.heap.pageSize();
const aligned_address = address & ~(page_size - 1);
if (aligned_address == 0) return false;
const aligned_memory = @as([*]align(min_page_size) u8, @ptrFromInt(aligned_address))[0..page_size];
const aligned_memory = @as([*]align(page_size_min) u8, @ptrFromInt(aligned_address))[0..page_size];
if (native_os == .windows) {
const windows = std.os.windows;

View File

@ -504,7 +504,7 @@ pub const Module = switch (native_os) {
.macos, .ios, .watchos, .tvos, .visionos => struct {
base_address: usize,
vmaddr_slide: usize,
mapped_memory: []align(std.heap.min_page_size) const u8,
mapped_memory: []align(std.heap.page_size_min) const u8,
symbols: []const MachoSymbol,
strings: [:0]const u8,
ofiles: OFileTable,
@ -1046,7 +1046,7 @@ pub fn readElfDebugInfo(
build_id: ?[]const u8,
expected_crc: ?u32,
parent_sections: *Dwarf.SectionArray,
parent_mapped_mem: ?[]align(std.heap.min_page_size) const u8,
parent_mapped_mem: ?[]align(std.heap.page_size_min) const u8,
) !Dwarf.ElfModule {
nosuspend {
const elf_file = (if (elf_filename) |filename| blk: {
@ -1088,7 +1088,7 @@ const MachoSymbol = struct {
/// Takes ownership of file, even on error.
/// TODO it's weird to take ownership even on error, rework this code.
fn mapWholeFile(file: File) ![]align(std.heap.min_page_size) const u8 {
fn mapWholeFile(file: File) ![]align(std.heap.page_size_min) const u8 {
nosuspend {
defer file.close();

View File

@ -1,7 +1,6 @@
const std = @import("std.zig");
const builtin = @import("builtin");
const mem = std.mem;
const heap = std.heap;
const testing = std.testing;
const elf = std.elf;
const windows = std.os.windows;
@ -144,7 +143,7 @@ pub const ElfDynLib = struct {
hashtab: [*]posix.Elf_Symndx,
versym: ?[*]elf.Versym,
verdef: ?*elf.Verdef,
memory: []align(heap.min_page_size) u8,
memory: []align(std.heap.page_size_min) u8,
pub const Error = ElfDynLibError;
@ -220,11 +219,13 @@ pub const ElfDynLib = struct {
const stat = try file.stat();
const size = std.math.cast(usize, stat.size) orelse return error.FileTooBig;
const page_size = std.heap.pageSize();
// This one is to read the ELF info. We do more mmapping later
// corresponding to the actual LOAD sections.
const file_bytes = try posix.mmap(
null,
mem.alignForward(usize, size, heap.pageSize()),
mem.alignForward(usize, size, page_size),
posix.PROT.READ,
.{ .TYPE = .PRIVATE },
fd,
@ -285,10 +286,10 @@ pub const ElfDynLib = struct {
elf.PT_LOAD => {
// The VirtAddr may not be page-aligned; in such case there will be
// extra nonsense mapped before/after the VirtAddr,MemSiz
const aligned_addr = (base + ph.p_vaddr) & ~(@as(usize, heap.pageSize()) - 1);
const aligned_addr = (base + ph.p_vaddr) & ~(@as(usize, page_size) - 1);
const extra_bytes = (base + ph.p_vaddr) - aligned_addr;
const extended_memsz = mem.alignForward(usize, ph.p_memsz + extra_bytes, heap.pageSize());
const ptr = @as([*]align(heap.min_page_size) u8, @ptrFromInt(aligned_addr));
const extended_memsz = mem.alignForward(usize, ph.p_memsz + extra_bytes, page_size);
const ptr = @as([*]align(std.heap.page_size_min) u8, @ptrFromInt(aligned_addr));
const prot = elfToMmapProt(ph.p_flags);
if ((ph.p_flags & elf.PF_W) == 0) {
// If it does not need write access, it can be mapped from the fd.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,218 @@
const std = @import("../std.zig");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const mem = std.mem;
const FixedBufferAllocator = @This();
end_index: usize,
buffer: []u8,
pub fn init(buffer: []u8) FixedBufferAllocator {
return FixedBufferAllocator{
.buffer = buffer,
.end_index = 0,
};
}
/// Using this at the same time as the interface returned by `threadSafeAllocator` is not thread safe.
pub fn allocator(self: *FixedBufferAllocator) Allocator {
return .{
.ptr = self,
.vtable = &.{
.alloc = alloc,
.resize = resize,
.free = free,
},
};
}
/// Provides a lock free thread safe `Allocator` interface to the underlying `FixedBufferAllocator`
///
/// Using this at the same time as the interface returned by `allocator` is not thread safe.
pub fn threadSafeAllocator(self: *FixedBufferAllocator) Allocator {
return .{
.ptr = self,
.vtable = &.{
.alloc = threadSafeAlloc,
.resize = Allocator.noResize,
.free = Allocator.noFree,
},
};
}
pub fn ownsPtr(self: *FixedBufferAllocator, ptr: [*]u8) bool {
return sliceContainsPtr(self.buffer, ptr);
}
pub fn ownsSlice(self: *FixedBufferAllocator, slice: []u8) bool {
return sliceContainsSlice(self.buffer, slice);
}
/// This has false negatives when the last allocation had an
/// adjusted_index. In such case we won't be able to determine what the
/// last allocation was because the alignForward operation done in alloc is
/// not reversible.
pub fn isLastAllocation(self: *FixedBufferAllocator, buf: []u8) bool {
return buf.ptr + buf.len == self.buffer.ptr + self.end_index;
}
pub fn alloc(ctx: *anyopaque, n: usize, log2_ptr_align: u8, ra: usize) ?[*]u8 {
const self: *FixedBufferAllocator = @ptrCast(@alignCast(ctx));
_ = ra;
const ptr_align = @as(usize, 1) << @as(Allocator.Log2Align, @intCast(log2_ptr_align));
const adjust_off = mem.alignPointerOffset(self.buffer.ptr + self.end_index, ptr_align) orelse return null;
const adjusted_index = self.end_index + adjust_off;
const new_end_index = adjusted_index + n;
if (new_end_index > self.buffer.len) return null;
self.end_index = new_end_index;
return self.buffer.ptr + adjusted_index;
}
pub fn resize(
ctx: *anyopaque,
buf: []u8,
log2_buf_align: u8,
new_size: usize,
return_address: usize,
) bool {
const self: *FixedBufferAllocator = @ptrCast(@alignCast(ctx));
_ = log2_buf_align;
_ = return_address;
assert(@inComptime() or self.ownsSlice(buf));
if (!self.isLastAllocation(buf)) {
if (new_size > buf.len) return false;
return true;
}
if (new_size <= buf.len) {
const sub = buf.len - new_size;
self.end_index -= sub;
return true;
}
const add = new_size - buf.len;
if (add + self.end_index > self.buffer.len) return false;
self.end_index += add;
return true;
}
pub fn free(
ctx: *anyopaque,
buf: []u8,
log2_buf_align: u8,
return_address: usize,
) void {
const self: *FixedBufferAllocator = @ptrCast(@alignCast(ctx));
_ = log2_buf_align;
_ = return_address;
assert(@inComptime() or self.ownsSlice(buf));
if (self.isLastAllocation(buf)) {
self.end_index -= buf.len;
}
}
fn threadSafeAlloc(ctx: *anyopaque, n: usize, log2_ptr_align: u8, ra: usize) ?[*]u8 {
const self: *FixedBufferAllocator = @ptrCast(@alignCast(ctx));
_ = ra;
const ptr_align = @as(usize, 1) << @as(Allocator.Log2Align, @intCast(log2_ptr_align));
var end_index = @atomicLoad(usize, &self.end_index, .seq_cst);
while (true) {
const adjust_off = mem.alignPointerOffset(self.buffer.ptr + end_index, ptr_align) orelse return null;
const adjusted_index = end_index + adjust_off;
const new_end_index = adjusted_index + n;
if (new_end_index > self.buffer.len) return null;
end_index = @cmpxchgWeak(usize, &self.end_index, end_index, new_end_index, .seq_cst, .seq_cst) orelse
return self.buffer[adjusted_index..new_end_index].ptr;
}
}
pub fn reset(self: *FixedBufferAllocator) void {
self.end_index = 0;
}
fn sliceContainsPtr(container: []u8, ptr: [*]u8) bool {
return @intFromPtr(ptr) >= @intFromPtr(container.ptr) and
@intFromPtr(ptr) < (@intFromPtr(container.ptr) + container.len);
}
fn sliceContainsSlice(container: []u8, slice: []u8) bool {
return @intFromPtr(slice.ptr) >= @intFromPtr(container.ptr) and
(@intFromPtr(slice.ptr) + slice.len) <= (@intFromPtr(container.ptr) + container.len);
}
var test_fixed_buffer_allocator_memory: [800000 * @sizeOf(u64)]u8 = undefined;
test FixedBufferAllocator {
var fixed_buffer_allocator = mem.validationWrap(FixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]));
const a = fixed_buffer_allocator.allocator();
try std.heap.testAllocator(a);
try std.heap.testAllocatorAligned(a);
try std.heap.testAllocatorLargeAlignment(a);
try std.heap.testAllocatorAlignedShrink(a);
}
test reset {
var buf: [8]u8 align(@alignOf(u64)) = undefined;
var fba = FixedBufferAllocator.init(buf[0..]);
const a = fba.allocator();
const X = 0xeeeeeeeeeeeeeeee;
const Y = 0xffffffffffffffff;
const x = try a.create(u64);
x.* = X;
try std.testing.expectError(error.OutOfMemory, a.create(u64));
fba.reset();
const y = try a.create(u64);
y.* = Y;
// we expect Y to have overwritten X.
try std.testing.expect(x.* == y.*);
try std.testing.expect(y.* == Y);
}
test "reuse memory on realloc" {
var small_fixed_buffer: [10]u8 = undefined;
// check if we re-use the memory
{
var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
const a = fixed_buffer_allocator.allocator();
const slice0 = try a.alloc(u8, 5);
try std.testing.expect(slice0.len == 5);
const slice1 = try a.realloc(slice0, 10);
try std.testing.expect(slice1.ptr == slice0.ptr);
try std.testing.expect(slice1.len == 10);
try std.testing.expectError(error.OutOfMemory, a.realloc(slice1, 11));
}
// check that we don't re-use the memory if it's not the most recent block
{
var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
const a = fixed_buffer_allocator.allocator();
var slice0 = try a.alloc(u8, 2);
slice0[0] = 1;
slice0[1] = 2;
const slice1 = try a.alloc(u8, 2);
const slice2 = try a.realloc(slice0, 4);
try std.testing.expect(slice0.ptr != slice2.ptr);
try std.testing.expect(slice1.ptr != slice2.ptr);
try std.testing.expect(slice2[0] == 1);
try std.testing.expect(slice2[1] == 2);
}
}
test "thread safe version" {
var fixed_buffer_allocator = FixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]);
try std.heap.testAllocator(fixed_buffer_allocator.threadSafeAllocator());
try std.heap.testAllocatorAligned(fixed_buffer_allocator.threadSafeAllocator());
try std.heap.testAllocatorLargeAlignment(fixed_buffer_allocator.threadSafeAllocator());
try std.heap.testAllocatorAlignedShrink(fixed_buffer_allocator.threadSafeAllocator());
}

View File

@ -2,14 +2,14 @@ const std = @import("../std.zig");
const builtin = @import("builtin");
const Allocator = std.mem.Allocator;
const mem = std.mem;
const heap = std.heap;
const maxInt = std.math.maxInt;
const assert = std.debug.assert;
const native_os = builtin.os.tag;
const windows = std.os.windows;
const posix = std.posix;
const page_size_min = std.heap.page_size_min;
pub const vtable = Allocator.VTable{
pub const vtable: Allocator.VTable = .{
.alloc = alloc,
.resize = resize,
.free = free,
@ -19,7 +19,6 @@ fn alloc(_: *anyopaque, n: usize, log2_align: u8, ra: usize) ?[*]u8 {
_ = ra;
_ = log2_align;
assert(n > 0);
if (n > maxInt(usize) - (heap.pageSize() - 1)) return null;
if (native_os == .windows) {
const addr = windows.VirtualAlloc(
@ -35,7 +34,10 @@ fn alloc(_: *anyopaque, n: usize, log2_align: u8, ra: usize) ?[*]u8 {
return @ptrCast(addr);
}
const aligned_len = mem.alignForward(usize, n, heap.pageSize());
const page_size = std.heap.pageSize();
if (n >= maxInt(usize) - page_size) return null;
const aligned_len = mem.alignForward(usize, n, page_size);
const hint = @atomicLoad(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, .unordered);
const slice = posix.mmap(
hint,
@ -45,8 +47,8 @@ fn alloc(_: *anyopaque, n: usize, log2_align: u8, ra: usize) ?[*]u8 {
-1,
0,
) catch return null;
assert(mem.isAligned(@intFromPtr(slice.ptr), heap.pageSize()));
const new_hint: [*]align(heap.min_page_size) u8 = @alignCast(slice.ptr + aligned_len);
assert(mem.isAligned(@intFromPtr(slice.ptr), page_size_min));
const new_hint: [*]align(std.heap.page_size_min) u8 = @alignCast(slice.ptr + aligned_len);
_ = @cmpxchgStrong(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, hint, new_hint, .monotonic, .monotonic);
return slice.ptr;
}
@ -60,13 +62,14 @@ fn resize(
) bool {
_ = log2_buf_align;
_ = return_address;
const new_size_aligned = mem.alignForward(usize, new_size, heap.pageSize());
const page_size = std.heap.pageSize();
const new_size_aligned = mem.alignForward(usize, new_size, page_size);
if (native_os == .windows) {
if (new_size <= buf_unaligned.len) {
const base_addr = @intFromPtr(buf_unaligned.ptr);
const old_addr_end = base_addr + buf_unaligned.len;
const new_addr_end = mem.alignForward(usize, base_addr + new_size, heap.pageSize());
const new_addr_end = mem.alignForward(usize, base_addr + new_size, page_size);
if (old_addr_end > new_addr_end) {
// For shrinking that is not releasing, we will only
// decommit the pages not needed anymore.
@ -78,14 +81,14 @@ fn resize(
}
return true;
}
const old_size_aligned = mem.alignForward(usize, buf_unaligned.len, heap.pageSize());
const old_size_aligned = mem.alignForward(usize, buf_unaligned.len, page_size);
if (new_size_aligned <= old_size_aligned) {
return true;
}
return false;
}
const buf_aligned_len = mem.alignForward(usize, buf_unaligned.len, heap.pageSize());
const buf_aligned_len = mem.alignForward(usize, buf_unaligned.len, page_size);
if (new_size_aligned == buf_aligned_len)
return true;
@ -108,7 +111,7 @@ fn free(_: *anyopaque, slice: []u8, log2_buf_align: u8, return_address: usize) v
if (native_os == .windows) {
windows.VirtualFree(slice.ptr, 0, windows.MEM_RELEASE);
} else {
const buf_aligned_len = mem.alignForward(usize, slice.len, heap.pageSize());
const buf_aligned_len = mem.alignForward(usize, slice.len, std.heap.pageSize());
posix.munmap(@alignCast(slice.ptr[0..buf_aligned_len]));
}
}

View File

@ -75,7 +75,7 @@
//! BucketHeader, followed by "used bits", and two stack traces for each slot
//! (allocation trace and free trace).
//!
//! The buckets array contains buckets for every size class below `max_page_size`.
//! The buckets array contains buckets for every size class below `page_size_max`.
//! At runtime, only size classes below `pageSize()` will actually be used for allocations.
//!
//! The "used bits" are 1 bit per slot representing whether the slot is used.
@ -102,13 +102,13 @@ const math = std.math;
const assert = std.debug.assert;
const mem = std.mem;
const Allocator = std.mem.Allocator;
const min_page_size = std.heap.min_page_size;
const max_page_size = std.heap.max_page_size;
const page_size_min = std.heap.page_size_min;
const page_size_max = std.heap.page_size_max;
const pageSize = std.heap.pageSize;
const StackTrace = std.builtin.StackTrace;
/// Integer type for pointing to slots in a small allocation
const SlotIndex = std.meta.Int(.unsigned, math.log2(max_page_size) + 1);
const SlotIndex = std.meta.Int(.unsigned, math.log2(page_size_max) + 1);
const default_test_stack_trace_frames: usize = if (builtin.is_test) 10 else 6;
const default_sys_stack_trace_frames: usize = if (std.debug.sys_can_stack_trace) default_test_stack_trace_frames else 0;
@ -214,7 +214,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
pub const Error = mem.Allocator.Error;
const small_bucket_count = math.log2(max_page_size);
const small_bucket_count = math.log2(page_size_max);
const largest_bucket_object_size = 1 << (small_bucket_count - 1);
const LargestSizeClassInt = std.math.IntFittingRange(0, largest_bucket_object_size);
fn used_small_bucket_count() usize {
@ -287,7 +287,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
// * stack_trace_addresses: [N]usize, // traces_per_slot for every allocation
const BucketHeader = struct {
page: [*]align(min_page_size) u8,
page: [*]align(page_size_min) u8,
alloc_cursor: SlotIndex,
used_count: SlotIndex,
@ -591,7 +591,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
addr: usize,
current_bucket: ?*BucketHeader,
) ?*BucketHeader {
const search_page: [*]align(min_page_size) u8 = @ptrFromInt(mem.alignBackward(usize, addr, pageSize()));
const search_page: [*]align(page_size_min) u8 = @ptrFromInt(mem.alignBackward(usize, addr, pageSize()));
if (current_bucket != null and current_bucket.?.page == search_page) {
return current_bucket;
}
@ -1062,7 +1062,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
}
fn createBucket(self: *Self, size_class: usize) Error!*BucketHeader {
const page = try self.backing_allocator.alignedAlloc(u8, min_page_size, pageSize());
const page = try self.backing_allocator.alignedAlloc(u8, page_size_min, pageSize());
errdefer self.backing_allocator.free(page);
const bucket_size = bucketSize(size_class);

View File

@ -1048,17 +1048,18 @@ pub fn indexOfSentinel(comptime T: type, comptime sentinel: T, p: [*:sentinel]co
// as we don't read into a new page. This should be the case for most architectures
// which use paged memory, however should be confirmed before adding a new arch below.
.aarch64, .x86, .x86_64 => if (std.simd.suggestVectorLength(T)) |block_len| {
const page_size = std.heap.pageSize();
const block_size = @sizeOf(T) * block_len;
const Block = @Vector(block_len, T);
const mask: Block = @splat(sentinel);
comptime std.debug.assert(std.heap.max_page_size % @sizeOf(Block) == 0);
std.debug.assert(std.heap.pageSize() % @sizeOf(Block) == 0);
comptime assert(std.heap.page_size_max % @sizeOf(Block) == 0);
assert(page_size % @sizeOf(Block) == 0);
// First block may be unaligned
const start_addr = @intFromPtr(&p[i]);
const offset_in_page = start_addr & (std.heap.pageSize() - 1);
if (offset_in_page <= std.heap.pageSize() - @sizeOf(Block)) {
const offset_in_page = start_addr & (page_size - 1);
if (offset_in_page <= page_size - @sizeOf(Block)) {
// Will not read past the end of a page, full block.
const block: Block = p[i..][0..block_len].*;
const matches = block == mask;
@ -1078,7 +1079,7 @@ pub fn indexOfSentinel(comptime T: type, comptime sentinel: T, p: [*:sentinel]co
}
}
std.debug.assert(std.mem.isAligned(@intFromPtr(&p[i]), block_size));
assert(std.mem.isAligned(@intFromPtr(&p[i]), block_size));
while (true) {
const block: *const Block = @ptrCast(@alignCast(p[i..][0..block_len]));
const matches = block.* == mask;
@ -1101,23 +1102,24 @@ pub fn indexOfSentinel(comptime T: type, comptime sentinel: T, p: [*:sentinel]co
test "indexOfSentinel vector paths" {
const Types = [_]type{ u8, u16, u32, u64 };
const allocator = std.testing.allocator;
const page_size = std.heap.pageSize();
inline for (Types) |T| {
const block_len = std.simd.suggestVectorLength(T) orelse continue;
// Allocate three pages so we guarantee a page-crossing address with a full page after
const memory = try allocator.alloc(T, 3 * std.heap.pageSize() / @sizeOf(T));
const memory = try allocator.alloc(T, 3 * page_size / @sizeOf(T));
defer allocator.free(memory);
@memset(memory, 0xaa);
// Find starting page-alignment = 0
var start: usize = 0;
const start_addr = @intFromPtr(&memory);
start += (std.mem.alignForward(usize, start_addr, std.heap.pageSize()) - start_addr) / @sizeOf(T);
try testing.expect(start < std.heap.pageSize() / @sizeOf(T));
start += (std.mem.alignForward(usize, start_addr, page_size) - start_addr) / @sizeOf(T);
try testing.expect(start < page_size / @sizeOf(T));
// Validate all sub-block alignments
const search_len = std.heap.pageSize() / @sizeOf(T);
const search_len = page_size / @sizeOf(T);
memory[start + search_len] = 0;
for (0..block_len) |offset| {
try testing.expectEqual(search_len - offset, indexOfSentinel(T, 0, @ptrCast(&memory[start + offset])));
@ -1125,7 +1127,7 @@ test "indexOfSentinel vector paths" {
memory[start + search_len] = 0xaa;
// Validate page boundary crossing
const start_page_boundary = start + (std.heap.pageSize() / @sizeOf(T));
const start_page_boundary = start + (page_size / @sizeOf(T));
memory[start_page_boundary + block_len] = 0;
for (0..block_len) |offset| {
try testing.expectEqual(2 * block_len - offset, indexOfSentinel(T, 0, @ptrCast(&memory[start_page_boundary - block_len + offset])));

View File

@ -18,11 +18,15 @@ ptr: *anyopaque,
vtable: *const VTable,
pub const VTable = struct {
/// Attempt to allocate exactly `len` bytes aligned to `1 << ptr_align`.
/// Allocate exactly `len` bytes aligned to `1 << ptr_align`, or return `null`
/// indicating the allocation failed.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
///
/// The returned slice of memory must have been `@memset` to `undefined`
/// by the allocator implementation.
alloc: *const fn (ctx: *anyopaque, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8,
/// Attempt to expand or shrink memory in place. `buf.len` must equal the
@ -215,11 +219,6 @@ fn allocWithSizeAndAlignment(self: Allocator, comptime size: usize, comptime ali
}
fn allocBytesWithAlignment(self: Allocator, comptime alignment: u29, byte_count: usize, return_address: usize) Error![*]align(alignment) u8 {
// The Zig Allocator interface is not intended to solve alignments beyond
// the minimum OS page size. For these use cases, the caller must use OS
// APIs directly.
if (!@inComptime() and alignment > std.heap.pageSize()) @panic("Alignment must be smaller than page size.");
if (byte_count == 0) {
const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), alignment);
return @as([*]align(alignment) u8, @ptrFromInt(ptr));

View File

@ -3,12 +3,12 @@ const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const heap = std.heap;
const net = std.net;
const posix = std.posix;
const linux = std.os.linux;
const testing = std.testing;
const is_linux = builtin.os.tag == .linux;
const page_size_min = std.heap.page_size_min;
fd: posix.fd_t = -1,
sq: SubmissionQueue,
@ -1342,8 +1342,8 @@ pub const SubmissionQueue = struct {
dropped: *u32,
array: []u32,
sqes: []linux.io_uring_sqe,
mmap: []align(heap.min_page_size) u8,
mmap_sqes: []align(heap.min_page_size) u8,
mmap: []align(page_size_min) u8,
mmap_sqes: []align(page_size_min) u8,
// We use `sqe_head` and `sqe_tail` in the same way as liburing:
// We increment `sqe_tail` (but not `tail`) for each call to `get_sqe()`.
@ -1461,7 +1461,7 @@ pub const BufferGroup = struct {
/// Pointer to the memory shared by the kernel.
/// `buffers_count` of `io_uring_buf` structures are shared by the kernel.
/// First `io_uring_buf` is overlaid by `io_uring_buf_ring` struct.
br: *align(heap.min_page_size) linux.io_uring_buf_ring,
br: *align(page_size_min) linux.io_uring_buf_ring,
/// Contiguous block of memory of size (buffers_count * buffer_size).
buffers: []u8,
/// Size of each buffer in buffers.
@ -1556,7 +1556,7 @@ pub const BufferGroup = struct {
/// `fd` is IO_Uring.fd for which the provided buffer ring is being registered.
/// `entries` is the number of entries requested in the buffer ring, must be power of 2.
/// `group_id` is the chosen buffer group ID, unique in IO_Uring.
pub fn setup_buf_ring(fd: posix.fd_t, entries: u16, group_id: u16) !*align(heap.min_page_size) linux.io_uring_buf_ring {
pub fn setup_buf_ring(fd: posix.fd_t, entries: u16, group_id: u16) !*align(page_size_min) linux.io_uring_buf_ring {
if (entries == 0 or entries > 1 << 15) return error.EntriesNotInRange;
if (!std.math.isPowerOfTwo(entries)) return error.EntriesNotPowerOfTwo;
@ -1572,7 +1572,7 @@ pub fn setup_buf_ring(fd: posix.fd_t, entries: u16, group_id: u16) !*align(heap.
errdefer posix.munmap(mmap);
assert(mmap.len == mmap_size);
const br: *align(heap.min_page_size) linux.io_uring_buf_ring = @ptrCast(mmap.ptr);
const br: *align(page_size_min) linux.io_uring_buf_ring = @ptrCast(mmap.ptr);
try register_buf_ring(fd, @intFromPtr(br), entries, group_id);
return br;
}
@ -1614,9 +1614,9 @@ fn handle_register_buf_ring_result(res: usize) !void {
}
// Unregisters a previously registered shared buffer ring, returned from io_uring_setup_buf_ring.
pub fn free_buf_ring(fd: posix.fd_t, br: *align(heap.min_page_size) linux.io_uring_buf_ring, entries: u32, group_id: u16) void {
pub fn free_buf_ring(fd: posix.fd_t, br: *align(page_size_min) linux.io_uring_buf_ring, entries: u32, group_id: u16) void {
unregister_buf_ring(fd, group_id) catch {};
var mmap: []align(heap.min_page_size) u8 = undefined;
var mmap: []align(page_size_min) u8 = undefined;
mmap.ptr = @ptrCast(br);
mmap.len = entries * @sizeOf(linux.io_uring_buf);
posix.munmap(mmap);

View File

@ -11,13 +11,13 @@
const std = @import("std");
const mem = std.mem;
const heap = std.heap;
const elf = std.elf;
const math = std.math;
const assert = std.debug.assert;
const native_arch = @import("builtin").cpu.arch;
const linux = std.os.linux;
const posix = std.posix;
const page_size_min = std.heap.page_size_min;
/// Represents an ELF TLS variant.
///
@ -485,13 +485,13 @@ pub fn prepareArea(area: []u8) usize {
};
}
// The main motivation for the size chosen here is that this is how much ends up being requested for
// the thread-local variables of the `std.crypto.random` implementation. I'm not sure why it ends up
// being so much; the struct itself is only 64 bytes. I think it has to do with being page-aligned
// and LLVM or LLD is not smart enough to lay out the TLS data in a space-conserving way. Anyway, I
// think it's fine because it's less than 3 pages of memory, and putting it in the ELF like this is
// equivalent to moving the `mmap` call below into the kernel, avoiding syscall overhead.
var main_thread_area_buffer: [0x2100]u8 align(heap.min_page_size) = undefined;
/// The main motivation for the size chosen here is that this is how much ends up being requested for
/// the thread-local variables of the `std.crypto.random` implementation. I'm not sure why it ends up
/// being so much; the struct itself is only 64 bytes. I think it has to do with being page-aligned
/// and LLVM or LLD is not smart enough to lay out the TLS data in a space-conserving way. Anyway, I
/// think it's fine because it's less than 3 pages of memory, and putting it in the ELF like this is
/// equivalent to moving the `mmap` call below into the kernel, avoiding syscall overhead.
var main_thread_area_buffer: [0x2100]u8 align(page_size_min) = undefined;
/// Computes the layout of the static TLS area, allocates the area, initializes all of its fields,
/// and assigns the architecture-specific value to the TP register.
@ -504,7 +504,7 @@ pub fn initStatic(phdrs: []elf.Phdr) void {
const area = blk: {
// Fast path for the common case where the TLS data is really small, avoid an allocation and
// use our local buffer.
if (area_desc.alignment <= heap.min_page_size and area_desc.size <= main_thread_area_buffer.len) {
if (area_desc.alignment <= page_size_min and area_desc.size <= main_thread_area_buffer.len) {
break :blk main_thread_area_buffer[0..area_desc.size];
}
@ -518,7 +518,7 @@ pub fn initStatic(phdrs: []elf.Phdr) void {
);
if (@as(isize, @bitCast(begin_addr)) < 0) @trap();
const area_ptr: [*]align(heap.min_page_size) u8 = @ptrFromInt(begin_addr);
const area_ptr: [*]align(page_size_min) u8 = @ptrFromInt(begin_addr);
// Make sure the slice is correctly aligned.
const begin_aligned_addr = alignForward(begin_addr, area_desc.alignment);

View File

@ -18,13 +18,13 @@ const builtin = @import("builtin");
const root = @import("root");
const std = @import("std.zig");
const mem = std.mem;
const heap = std.heap;
const fs = std.fs;
const max_path_bytes = fs.max_path_bytes;
const maxInt = std.math.maxInt;
const cast = std.math.cast;
const assert = std.debug.assert;
const native_os = builtin.os.tag;
const page_size_min = std.heap.page_size_min;
test {
_ = @import("posix/test.zig");
@ -4695,7 +4695,7 @@ pub const MProtectError = error{
OutOfMemory,
} || UnexpectedError;
pub fn mprotect(memory: []align(heap.min_page_size) u8, protection: u32) MProtectError!void {
pub fn mprotect(memory: []align(page_size_min) u8, protection: u32) MProtectError!void {
if (native_os == .windows) {
const win_prot: windows.DWORD = switch (@as(u3, @truncate(protection))) {
0b000 => windows.PAGE_NOACCESS,
@ -4760,21 +4760,21 @@ pub const MMapError = error{
/// * SIGSEGV - Attempted write into a region mapped as read-only.
/// * SIGBUS - Attempted access to a portion of the buffer that does not correspond to the file
pub fn mmap(
ptr: ?[*]align(heap.min_page_size) u8,
ptr: ?[*]align(page_size_min) u8,
length: usize,
prot: u32,
flags: system.MAP,
fd: fd_t,
offset: u64,
) MMapError![]align(heap.min_page_size) u8 {
) MMapError![]align(page_size_min) u8 {
const mmap_sym = if (lfs64_abi) system.mmap64 else system.mmap;
const rc = mmap_sym(ptr, length, prot, @bitCast(flags), fd, @bitCast(offset));
const err: E = if (builtin.link_libc) blk: {
if (rc != std.c.MAP_FAILED) return @as([*]align(heap.min_page_size) u8, @ptrCast(@alignCast(rc)))[0..length];
if (rc != std.c.MAP_FAILED) return @as([*]align(page_size_min) u8, @ptrCast(@alignCast(rc)))[0..length];
break :blk @enumFromInt(system._errno().*);
} else blk: {
const err = errno(rc);
if (err == .SUCCESS) return @as([*]align(heap.min_page_size) u8, @ptrFromInt(rc))[0..length];
if (err == .SUCCESS) return @as([*]align(page_size_min) u8, @ptrFromInt(rc))[0..length];
break :blk err;
};
switch (err) {
@ -4800,7 +4800,7 @@ pub fn mmap(
/// Zig's munmap function does not, for two reasons:
/// * It violates the Zig principle that resource deallocation must succeed.
/// * The Windows function, VirtualFree, has this restriction.
pub fn munmap(memory: []align(heap.min_page_size) const u8) void {
pub fn munmap(memory: []align(page_size_min) const u8) void {
switch (errno(system.munmap(memory.ptr, memory.len))) {
.SUCCESS => return,
.INVAL => unreachable, // Invalid parameters.
@ -4814,7 +4814,7 @@ pub const MSyncError = error{
PermissionDenied,
} || UnexpectedError;
pub fn msync(memory: []align(heap.min_page_size) u8, flags: i32) MSyncError!void {
pub fn msync(memory: []align(page_size_min) u8, flags: i32) MSyncError!void {
switch (errno(system.msync(memory.ptr, memory.len, flags))) {
.SUCCESS => return,
.PERM => return error.PermissionDenied,
@ -7136,7 +7136,7 @@ pub const MincoreError = error{
} || UnexpectedError;
/// Determine whether pages are resident in memory.
pub fn mincore(ptr: [*]align(heap.min_page_size) u8, length: usize, vec: [*]u8) MincoreError!void {
pub fn mincore(ptr: [*]align(page_size_min) u8, length: usize, vec: [*]u8) MincoreError!void {
return switch (errno(system.mincore(ptr, length, vec))) {
.SUCCESS => {},
.AGAIN => error.SystemResources,
@ -7182,7 +7182,7 @@ pub const MadviseError = error{
/// Give advice about use of memory.
/// This syscall is optional and is sometimes configured to be disabled.
pub fn madvise(ptr: [*]align(heap.min_page_size) u8, length: usize, advice: u32) MadviseError!void {
pub fn madvise(ptr: [*]align(page_size_min) u8, length: usize, advice: u32) MadviseError!void {
switch (errno(system.madvise(ptr, length, advice))) {
.SUCCESS => return,
.PERM => return error.PermissionDenied,

View File

@ -1560,7 +1560,7 @@ pub fn posixGetUserInfo(name: []const u8) !UserInfo {
ReadGroupId,
};
var buf: [std.heap.min_page_size]u8 = undefined;
var buf: [std.heap.page_size_min]u8 = undefined;
var name_index: usize = 0;
var state = State.Start;
var uid: posix.uid_t = 0;

View File

@ -576,7 +576,7 @@ fn expandStackSize(phdrs: []elf.Phdr) void {
switch (phdr.p_type) {
elf.PT_GNU_STACK => {
if (phdr.p_memsz == 0) break;
assert(phdr.p_memsz % std.heap.pageSize() == 0);
assert(phdr.p_memsz % std.heap.page_size_min == 0);
// Silently fail if we are unable to get limits.
const limits = std.posix.getrlimit(.STACK) catch break;

View File

@ -119,9 +119,12 @@ pub const Options = struct {
args: anytype,
) void = log.defaultLog,
min_page_size: ?usize = null,
max_page_size: ?usize = null,
queryPageSizeFn: fn () usize = heap.defaultQueryPageSize,
/// Overrides `std.heap.page_size_min`.
page_size_min: ?usize = null,
/// Overrides `std.heap.page_size_max`.
page_size_max: ?usize = null,
/// Overrides default implementation for determining OS page size at runtime.
queryPageSize: fn () usize = heap.defaultQueryPageSize,
fmt_max_depth: usize = fmt.default_max_depth,

View File

@ -1249,7 +1249,7 @@ fn unzip(f: *Fetch, out_dir: fs.Dir, reader: anytype) RunError!UnpackResult {
.{@errorName(err)},
));
defer zip_file.close();
var buf: [std.heap.min_page_size]u8 = undefined;
var buf: [4096]u8 = undefined;
while (true) {
const len = reader.readAll(&buf) catch |err| return f.fail(f.location_tok, try eb.printString(
"read zip stream failed: {s}",