IR: compile time function evaluation

This commit is contained in:
Andrew Kelley 2016-12-04 23:52:43 -05:00
parent 9f23475b17
commit 25a89e7a36
6 changed files with 156 additions and 82 deletions

View File

@ -46,7 +46,7 @@ struct IrExecutable {
ZigList<IrBasicBlock *> basic_block_list;
size_t mem_slot_count;
size_t next_debug_id;
size_t backward_branch_count;
size_t *backward_branch_count;
size_t backward_branch_quota;
bool invalid;
ZigList<LabelTableEntry *> all_labels;
@ -968,6 +968,7 @@ struct FnTableEntry {
FnAnalState anal_state;
IrExecutable ir_executable;
IrExecutable analyzed_executable;
size_t prealloc_bbc;
AstNode *fn_no_inline_set_node;
AstNode *fn_export_set_node;
@ -1311,6 +1312,7 @@ struct IrBasicBlock {
size_t debug_id;
size_t ref_count;
LLVMBasicBlockRef llvm_block;
LLVMBasicBlockRef llvm_exit_block;
};
enum IrInstructionId {

View File

@ -873,43 +873,9 @@ TypeTableEntry *get_underlying_type(TypeTableEntry *type_entry) {
}
}
static IrInstruction *analyze_const_value(CodeGen *g, Scope *scope, AstNode *node,
TypeTableEntry *expected_type)
{
IrExecutable ir_executable = {0};
ir_executable.is_inline = true;
ir_gen(g, node, scope, &ir_executable);
if (ir_executable.invalid)
return g->invalid_instruction;
if (g->verbose) {
fprintf(stderr, "\nSource: ");
ast_render(stderr, node, 4);
fprintf(stderr, "\n{ // (IR)\n");
ir_print(stderr, &ir_executable, 4);
fprintf(stderr, "}\n");
}
IrExecutable analyzed_executable = {0};
analyzed_executable.is_inline = true;
analyzed_executable.backward_branch_quota = default_backward_branch_quota;
TypeTableEntry *result_type = ir_analyze(g, &ir_executable, &analyzed_executable, expected_type, node);
if (result_type->id == TypeTableEntryIdInvalid)
return g->invalid_instruction;
if (g->verbose) {
fprintf(stderr, "{ // (analyzed)\n");
ir_print(stderr, &analyzed_executable, 4);
fprintf(stderr, "}\n");
}
IrInstruction *result = ir_exec_const_result(&analyzed_executable);
if (!result) {
add_node_error(g, node, buf_sprintf("unable to evaluate constant expression"));
return g->invalid_instruction;
}
return result;
static IrInstruction *analyze_const_value(CodeGen *g, Scope *scope, AstNode *node, TypeTableEntry *type_entry) {
size_t backward_branch_count = 0;
return ir_eval_const_value(g, scope, node, type_entry, &backward_branch_count, default_backward_branch_quota);
}
static TypeTableEntry *analyze_type_expr(CodeGen *g, Scope *scope, AstNode *node) {
@ -1403,9 +1369,10 @@ static void resolve_decl_fn(CodeGen *g, TldFn *tld_fn) {
}
FnTableEntry *fn_table_entry = allocate<FnTableEntry>(1);
fn_table_entry->analyzed_executable.backward_branch_count = &fn_table_entry->prealloc_bbc;
fn_table_entry->analyzed_executable.backward_branch_quota = default_backward_branch_quota;
fn_table_entry->ir_executable.fn_entry = fn_table_entry;
fn_table_entry->analyzed_executable.fn_entry = fn_table_entry;
fn_table_entry->ir_executable.fn_entry = fn_table_entry;
fn_table_entry->import_entry = import;
fn_table_entry->proto_node = proto_node;
fn_table_entry->fn_def_node = fn_def_node;

View File

@ -1758,7 +1758,7 @@ static LLVMValueRef ir_render_phi(CodeGen *g, IrExecutable *executable, IrInstru
LLVMBasicBlockRef *incoming_blocks = allocate<LLVMBasicBlockRef>(instruction->incoming_count);
for (size_t i = 0; i < instruction->incoming_count; i += 1) {
incoming_values[i] = ir_llvm_value(g, instruction->incoming_values[i]);
incoming_blocks[i] = instruction->incoming_blocks[i]->llvm_block;
incoming_blocks[i] = instruction->incoming_blocks[i]->llvm_exit_block;
}
LLVMAddIncoming(phi, incoming_values, incoming_blocks, instruction->incoming_count);
return phi;
@ -1877,6 +1877,7 @@ static void ir_render(CodeGen *g, FnTableEntry *fn_entry) {
continue;
instruction->llvm_value = ir_render_instruction(g, executable, instruction);
}
current_block->llvm_exit_block = LLVMGetInsertBlock(g->builder);
}
}

View File

@ -6,6 +6,7 @@
*/
#include "analyze.hpp"
#include "ast_render.hpp"
#include "error.hpp"
#include "eval.hpp"
#include "ir.hpp"
@ -2814,7 +2815,7 @@ IrInstruction *ir_gen(CodeGen *codegen, AstNode *node, Scope *scope, IrExecutabl
return return_instruction;
}
IrInstruction *ir_gen_fn(CodeGen *codegn, FnTableEntry *fn_entry) {
IrInstruction *ir_gen_fn(CodeGen *codegen, FnTableEntry *fn_entry) {
assert(fn_entry);
IrExecutable *ir_executable = &fn_entry->ir_executable;
@ -2826,18 +2827,30 @@ IrInstruction *ir_gen_fn(CodeGen *codegn, FnTableEntry *fn_entry) {
assert(fn_entry->child_scope);
Scope *child_scope = fn_entry->child_scope;
return ir_gen(codegn, body_node, child_scope, ir_executable);
return ir_gen(codegen, body_node, child_scope, ir_executable);
}
static ErrorMsg *ir_add_error(IrAnalyze *ira, IrInstruction *source_instruction, Buf *msg) {
ira->new_irb.exec->invalid = true;
return add_node_error(ira->codegen, source_instruction->source_node, msg);
}
static IrInstruction *ir_eval_fn(IrAnalyze *ira, IrInstruction *source_instruction,
size_t arg_count, IrInstruction **args)
{
// TODO count this as part of the backward branch quota
zig_panic("TODO ir_eval_fn");
static IrInstruction *ir_exec_const_result(IrExecutable *exec) {
if (exec->basic_block_list.length != 1)
return nullptr;
IrBasicBlock *bb = exec->basic_block_list.at(0);
if (bb->instruction_list.length != 1)
return nullptr;
IrInstruction *only_inst = bb->instruction_list.at(0);
if (only_inst->id != IrInstructionIdReturn)
return nullptr;
IrInstructionReturn *ret_inst = (IrInstructionReturn *)only_inst;
IrInstruction *value = ret_inst->value;
assert(value->static_value.special != ConstValSpecialRuntime);
return value;
}
static bool ir_emit_global_runtime_side_effect(IrAnalyze *ira, IrInstruction *source_instruction) {
@ -3140,14 +3153,26 @@ static TypeTableEntry *ir_unreach_error(IrAnalyze *ira) {
return ira->codegen->builtin_types.entry_unreachable;
}
static bool ir_emit_backward_branch(IrAnalyze *ira, IrInstruction *source_instruction) {
size_t *bbc = ira->new_irb.exec->backward_branch_count;
size_t quota = ira->new_irb.exec->backward_branch_quota;
// If we're already over quota, we've already given an error message for this.
if (*bbc > quota)
return false;
*bbc += 1;
if (*bbc > quota) {
ir_add_error(ira, source_instruction, buf_sprintf("evaluation exceeded %zu backwards branches", quota));
return false;
}
return true;
}
static TypeTableEntry *ir_inline_bb(IrAnalyze *ira, IrInstruction *source_instruction, IrBasicBlock *old_bb) {
if (old_bb->debug_id <= ira->old_irb.current_basic_block->debug_id) {
ira->new_irb.exec->backward_branch_count += 1;
if (ira->new_irb.exec->backward_branch_count > ira->new_irb.exec->backward_branch_quota) {
add_node_error(ira->codegen, source_instruction->source_node,
buf_sprintf("evaluation exceeded %zu backwards branches", ira->new_irb.exec->backward_branch_quota));
if (!ir_emit_backward_branch(ira, source_instruction))
return ir_unreach_error(ira);
}
}
ir_start_bb(ira, old_bb, ira->old_irb.current_basic_block);
@ -3216,13 +3241,90 @@ static TypeTableEntry *ir_analyze_const_usize(IrAnalyze *ira, IrInstruction *ins
static ConstExprValue *ir_resolve_const(IrAnalyze *ira, IrInstruction *value) {
if (value->static_value.special != ConstValSpecialStatic) {
add_node_error(ira->codegen, value->source_node,
buf_sprintf("unable to evaluate constant expression"));
ir_add_error(ira, value, buf_sprintf("unable to evaluate constant expression"));
return nullptr;
}
return &value->static_value;
}
IrInstruction *ir_eval_const_value(CodeGen *codegen, Scope *scope, AstNode *node,
TypeTableEntry *expected_type, size_t *backward_branch_count, size_t backward_branch_quota)
{
IrExecutable ir_executable = {0};
ir_executable.is_inline = true;
ir_gen(codegen, node, scope, &ir_executable);
if (ir_executable.invalid)
return codegen->invalid_instruction;
if (codegen->verbose) {
fprintf(stderr, "\nSource: ");
ast_render(stderr, node, 4);
fprintf(stderr, "\n{ // (IR)\n");
ir_print(stderr, &ir_executable, 4);
fprintf(stderr, "}\n");
}
IrExecutable analyzed_executable = {0};
analyzed_executable.is_inline = true;
analyzed_executable.backward_branch_count = backward_branch_count;
analyzed_executable.backward_branch_quota = backward_branch_quota;
TypeTableEntry *result_type = ir_analyze(codegen, &ir_executable, &analyzed_executable, expected_type, node);
if (result_type->id == TypeTableEntryIdInvalid)
return codegen->invalid_instruction;
if (codegen->verbose) {
fprintf(stderr, "{ // (analyzed)\n");
ir_print(stderr, &analyzed_executable, 4);
fprintf(stderr, "}\n");
}
IrInstruction *result = ir_exec_const_result(&analyzed_executable);
if (!result) {
add_node_error(codegen, node, buf_sprintf("unable to evaluate constant expression"));
return codegen->invalid_instruction;
}
return result;
}
static IrInstruction *ir_eval_fn(IrAnalyze *ira, IrInstruction *source_instruction,
FnTableEntry *fn_entry, IrInstruction **args)
{
if (!fn_entry) {
ir_add_error(ira, source_instruction,
buf_sprintf("unable to evaluate constant expression"));
return ira->codegen->invalid_instruction;
}
if (!ir_emit_backward_branch(ira, source_instruction))
return ira->codegen->invalid_instruction;
TypeTableEntry *fn_type = fn_entry->type_entry;
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
// Fork a scope of the function with known values for the parameters.
Scope *exec_scope = &fn_entry->fndef_scope->base;
for (size_t i = 0; i < fn_type_id->param_count; i += 1) {
AstNode *param_decl_node = fn_entry->proto_node->data.fn_proto.params.at(i);
Buf *param_name = param_decl_node->data.param_decl.name;
IrInstruction *arg = args[i];
ConstExprValue *arg_val = ir_resolve_const(ira, arg);
if (!arg_val)
return ira->codegen->invalid_instruction;
VariableTableEntry *var = add_variable(ira->codegen, param_decl_node, exec_scope, param_name,
arg->type_entry, true, arg_val);
exec_scope = var->child_scope;
}
// Analyze the fn body block like any other constant expression.
AstNode *body_node = fn_entry->fn_def_node->data.fn_def.body;
return ir_eval_const_value(ira->codegen, exec_scope, body_node, fn_type_id->return_type,
ira->new_irb.exec->backward_branch_count, ira->new_irb.exec->backward_branch_quota);
}
static TypeTableEntry *ir_resolve_type_lval(IrAnalyze *ira, IrInstruction *type_value, LValPurpose lval) {
if (lval != LValPurposeNone)
zig_panic("TODO");
@ -4238,7 +4340,8 @@ static TypeTableEntry *ir_analyze_fn_call(IrAnalyze *ira, IrInstructionCall *cal
return ira->codegen->builtin_types.entry_invalid;
if (is_inline) {
IrInstruction *result = ir_eval_fn(ira, &call_instruction->base, call_param_count, casted_args);
assert(call_param_count == fn_type_id->param_count);
IrInstruction *result = ir_eval_fn(ira, &call_instruction->base, fn_entry, casted_args);
if (result->type_entry->id == TypeTableEntryIdInvalid)
return ira->codegen->builtin_types.entry_invalid;
@ -4252,9 +4355,9 @@ static TypeTableEntry *ir_analyze_fn_call(IrAnalyze *ira, IrInstructionCall *cal
fn_entry, fn_ref, call_param_count, casted_args);
if (type_has_bits(return_type) && handle_is_ptr(return_type)) {
FnTableEntry *fn_entry = exec_fn_entry(ira->new_irb.exec);
assert(fn_entry);
fn_entry->alloca_list.append(new_call_instruction);
FnTableEntry *owner_fn = exec_fn_entry(ira->new_irb.exec);
assert(owner_fn);
owner_fn->alloca_list.append(new_call_instruction);
}
return ir_finish_anal(ira, return_type);
@ -4782,13 +4885,13 @@ static TypeTableEntry *ir_analyze_var_ptr(IrAnalyze *ira, IrInstruction *instruc
ConstExprValue *mem_slot = nullptr;
FnTableEntry *fn_entry = scope_fn_entry(var->parent_scope);
if (fn_entry) {
if (var->src_is_const && var->value) {
mem_slot = var->value;
assert(mem_slot->special != ConstValSpecialRuntime);
} else if (fn_entry) {
// TODO once the analyze code is fully ported over to IR we won't need this SIZE_MAX thing.
if (var->mem_slot_index != SIZE_MAX)
mem_slot = &ira->exec_context.mem_slot_list[var->mem_slot_index];
} else if (var->src_is_const) {
mem_slot = var->value;
assert(mem_slot->special != ConstValSpecialRuntime);
}
if (mem_slot && mem_slot->special != ConstValSpecialRuntime) {
@ -6481,24 +6584,6 @@ bool ir_has_side_effects(IrInstruction *instruction) {
zig_unreachable();
}
IrInstruction *ir_exec_const_result(IrExecutable *exec) {
if (exec->basic_block_list.length != 1)
return nullptr;
IrBasicBlock *bb = exec->basic_block_list.at(0);
if (bb->instruction_list.length != 1)
return nullptr;
IrInstruction *only_inst = bb->instruction_list.at(0);
if (only_inst->id != IrInstructionIdReturn)
return nullptr;
IrInstructionReturn *ret_inst = (IrInstructionReturn *)only_inst;
IrInstruction *value = ret_inst->value;
assert(value->static_value.special != ConstValSpecialRuntime);
return value;
}
// TODO port over all this commented out code into new IR way of doing things
//static TypeTableEntry *analyze_min_max_value(CodeGen *g, ImportTableEntry *import, BlockContext *context,

View File

@ -13,11 +13,12 @@
IrInstruction *ir_gen(CodeGen *g, AstNode *node, Scope *scope, IrExecutable *ir_executable);
IrInstruction *ir_gen_fn(CodeGen *g, FnTableEntry *fn_entry);
IrInstruction *ir_eval_const_value(CodeGen *codegen, Scope *scope, AstNode *node,
TypeTableEntry *expected_type, size_t *backward_branch_count, size_t backward_branch_quota);
TypeTableEntry *ir_analyze(CodeGen *g, IrExecutable *old_executable, IrExecutable *new_executable,
TypeTableEntry *expected_type, AstNode *expected_type_source_node);
IrInstruction *ir_exec_const_result(IrExecutable *exec);
bool ir_has_side_effects(IrInstruction *instruction);
ConstExprValue *const_ptr_pointee(ConstExprValue *const_val);

View File

@ -96,6 +96,22 @@ fn testStructStatic() {
assert(result == 7);
}
const should_be_11 = FooA.add(5, 6);
fn testStaticFnEval() {
assert(should_be_11 == 11);
}
fn fib(x: i32) -> i32 {
if (x < 2) x else fib(x - 1) + fib(x - 2)
}
const fib_7 = fib(7);
fn testCompileTimeFib() {
assert(fib_7 == 13);
}
fn assert(ok: bool) {
if (!ok)
@unreachable();
@ -111,6 +127,8 @@ fn runAllTests() {
testNamespaceFnCall();
gotoAndLabels();
testStructStatic();
testStaticFnEval();
testCompileTimeFib();
}
export nakedcc fn _start() -> unreachable {