update uses of deprecated type field access

This commit is contained in:
Vexu 2020-09-03 18:09:55 +03:00
parent 4eeeda0f52
commit 1df0f3ac24
No known key found for this signature in database
GPG Key ID: 59AEB8936E16A6AC
63 changed files with 362 additions and 366 deletions

View File

@ -275,9 +275,7 @@ pub const ChildProcess = struct {
} }
fn handleWaitResult(self: *ChildProcess, status: u32) void { fn handleWaitResult(self: *ChildProcess, status: u32) void {
// TODO https://github.com/ziglang/zig/issues/3190 self.term = self.cleanupAfterWait(status);
var term = self.cleanupAfterWait(status);
self.term = term;
} }
fn cleanupStreams(self: *ChildProcess) void { fn cleanupStreams(self: *ChildProcess) void {

View File

@ -9,10 +9,10 @@ const testing = std.testing;
/// Read a single unsigned LEB128 value from the given reader as type T, /// Read a single unsigned LEB128 value from the given reader as type T,
/// or error.Overflow if the value cannot fit. /// or error.Overflow if the value cannot fit.
pub fn readULEB128(comptime T: type, reader: anytype) !T { pub fn readULEB128(comptime T: type, reader: anytype) !T {
const U = if (T.bit_count < 8) u8 else T; const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
const ShiftT = std.math.Log2Int(U); const ShiftT = std.math.Log2Int(U);
const max_group = (U.bit_count + 6) / 7; const max_group = (@typeInfo(U).Int.bits + 6) / 7;
var value = @as(U, 0); var value = @as(U, 0);
var group = @as(ShiftT, 0); var group = @as(ShiftT, 0);
@ -40,7 +40,7 @@ pub fn readULEB128(comptime T: type, reader: anytype) !T {
/// Write a single unsigned integer as unsigned LEB128 to the given writer. /// Write a single unsigned integer as unsigned LEB128 to the given writer.
pub fn writeULEB128(writer: anytype, uint_value: anytype) !void { pub fn writeULEB128(writer: anytype, uint_value: anytype) !void {
const T = @TypeOf(uint_value); const T = @TypeOf(uint_value);
const U = if (T.bit_count < 8) u8 else T; const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
var value = @intCast(U, uint_value); var value = @intCast(U, uint_value);
while (true) { while (true) {
@ -68,7 +68,7 @@ pub fn readULEB128Mem(comptime T: type, ptr: *[]const u8) !T {
/// returning the number of bytes written. /// returning the number of bytes written.
pub fn writeULEB128Mem(ptr: []u8, uint_value: anytype) !usize { pub fn writeULEB128Mem(ptr: []u8, uint_value: anytype) !usize {
const T = @TypeOf(uint_value); const T = @TypeOf(uint_value);
const max_group = (T.bit_count + 6) / 7; const max_group = (@typeInfo(T).Int.bits + 6) / 7;
var buf = std.io.fixedBufferStream(ptr); var buf = std.io.fixedBufferStream(ptr);
try writeULEB128(buf.writer(), uint_value); try writeULEB128(buf.writer(), uint_value);
return buf.pos; return buf.pos;
@ -77,11 +77,11 @@ pub fn writeULEB128Mem(ptr: []u8, uint_value: anytype) !usize {
/// Read a single signed LEB128 value from the given reader as type T, /// Read a single signed LEB128 value from the given reader as type T,
/// or error.Overflow if the value cannot fit. /// or error.Overflow if the value cannot fit.
pub fn readILEB128(comptime T: type, reader: anytype) !T { pub fn readILEB128(comptime T: type, reader: anytype) !T {
const S = if (T.bit_count < 8) i8 else T; const S = if (@typeInfo(T).Int.bits < 8) i8 else T;
const U = std.meta.Int(false, S.bit_count); const U = std.meta.Int(false, @typeInfo(S).Int.bits);
const ShiftU = std.math.Log2Int(U); const ShiftU = std.math.Log2Int(U);
const max_group = (U.bit_count + 6) / 7; const max_group = (@typeInfo(U).Int.bits + 6) / 7;
var value = @as(U, 0); var value = @as(U, 0);
var group = @as(ShiftU, 0); var group = @as(ShiftU, 0);
@ -97,7 +97,7 @@ pub fn readILEB128(comptime T: type, reader: anytype) !T {
if (@bitCast(S, temp) >= 0) return error.Overflow; if (@bitCast(S, temp) >= 0) return error.Overflow;
// and all the overflowed bits are 1 // and all the overflowed bits are 1
const remaining_shift = @intCast(u3, U.bit_count - @as(u16, shift)); const remaining_shift = @intCast(u3, @typeInfo(U).Int.bits - @as(u16, shift));
const remaining_bits = @bitCast(i8, byte | 0x80) >> remaining_shift; const remaining_bits = @bitCast(i8, byte | 0x80) >> remaining_shift;
if (remaining_bits != -1) return error.Overflow; if (remaining_bits != -1) return error.Overflow;
} }
@ -127,8 +127,8 @@ pub fn readILEB128(comptime T: type, reader: anytype) !T {
/// Write a single signed integer as signed LEB128 to the given writer. /// Write a single signed integer as signed LEB128 to the given writer.
pub fn writeILEB128(writer: anytype, int_value: anytype) !void { pub fn writeILEB128(writer: anytype, int_value: anytype) !void {
const T = @TypeOf(int_value); const T = @TypeOf(int_value);
const S = if (T.bit_count < 8) i8 else T; const S = if (@typeInfo(T).Int.bits < 8) i8 else T;
const U = std.meta.Int(false, S.bit_count); const U = std.meta.Int(false, @typeInfo(S).Int.bits);
var value = @intCast(S, int_value); var value = @intCast(S, int_value);
@ -173,7 +173,7 @@ pub fn writeILEB128Mem(ptr: []u8, int_value: anytype) !usize {
/// different value without shifting all the following code. /// different value without shifting all the following code.
pub fn writeUnsignedFixed(comptime l: usize, ptr: *[l]u8, int: std.meta.Int(false, l * 7)) void { pub fn writeUnsignedFixed(comptime l: usize, ptr: *[l]u8, int: std.meta.Int(false, l * 7)) void {
const T = @TypeOf(int); const T = @TypeOf(int);
const U = if (T.bit_count < 8) u8 else T; const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
var value = @intCast(U, int); var value = @intCast(U, int);
comptime var i = 0; comptime var i = 0;
@ -346,28 +346,29 @@ test "deserialize unsigned LEB128" {
fn test_write_leb128(value: anytype) !void { fn test_write_leb128(value: anytype) !void {
const T = @TypeOf(value); const T = @TypeOf(value);
const t_signed = @typeInfo(T).Int.is_signed;
const writeStream = if (T.is_signed) writeILEB128 else writeULEB128; const writeStream = if (t_signed) writeILEB128 else writeULEB128;
const writeMem = if (T.is_signed) writeILEB128Mem else writeULEB128Mem; const writeMem = if (t_signed) writeILEB128Mem else writeULEB128Mem;
const readStream = if (T.is_signed) readILEB128 else readULEB128; const readStream = if (t_signed) readILEB128 else readULEB128;
const readMem = if (T.is_signed) readILEB128Mem else readULEB128Mem; const readMem = if (t_signed) readILEB128Mem else readULEB128Mem;
// decode to a larger bit size too, to ensure sign extension // decode to a larger bit size too, to ensure sign extension
// is working as expected // is working as expected
const larger_type_bits = ((T.bit_count + 8) / 8) * 8; const larger_type_bits = ((@typeInfo(T).Int.bits + 8) / 8) * 8;
const B = std.meta.Int(T.is_signed, larger_type_bits); const B = std.meta.Int(t_signed, larger_type_bits);
const bytes_needed = bn: { const bytes_needed = bn: {
const S = std.meta.Int(T.is_signed, @sizeOf(T) * 8); const S = std.meta.Int(t_signed, @sizeOf(T) * 8);
if (T.bit_count <= 7) break :bn @as(u16, 1); if (@typeInfo(T).Int.bits <= 7) break :bn @as(u16, 1);
const unused_bits = if (value < 0) @clz(T, ~value) else @clz(T, value); const unused_bits = if (value < 0) @clz(T, ~value) else @clz(T, value);
const used_bits: u16 = (T.bit_count - unused_bits) + @boolToInt(T.is_signed); const used_bits: u16 = (@typeInfo(T).Int.bits - unused_bits) + @boolToInt(t_signed);
if (used_bits <= 7) break :bn @as(u16, 1); if (used_bits <= 7) break :bn @as(u16, 1);
break :bn ((used_bits + 6) / 7); break :bn ((used_bits + 6) / 7);
}; };
const max_groups = if (T.bit_count == 0) 1 else (T.bit_count + 6) / 7; const max_groups = if (@typeInfo(T).Int.bits == 0) 1 else (@typeInfo(T).Int.bits + 6) / 7;
var buf: [max_groups]u8 = undefined; var buf: [max_groups]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf); var fbs = std.io.fixedBufferStream(&buf);
@ -414,7 +415,7 @@ test "serialize unsigned LEB128" {
const T = std.meta.Int(false, t); const T = std.meta.Int(false, t);
const min = std.math.minInt(T); const min = std.math.minInt(T);
const max = std.math.maxInt(T); const max = std.math.maxInt(T);
var i = @as(std.meta.Int(false, T.bit_count + 1), min); var i = @as(std.meta.Int(false, @typeInfo(T).Int.bits + 1), min);
while (i <= max) : (i += 1) try test_write_leb128(@intCast(T, i)); while (i <= max) : (i += 1) try test_write_leb128(@intCast(T, i));
} }
@ -432,7 +433,7 @@ test "serialize signed LEB128" {
const T = std.meta.Int(true, t); const T = std.meta.Int(true, t);
const min = std.math.minInt(T); const min = std.math.minInt(T);
const max = std.math.maxInt(T); const max = std.math.maxInt(T);
var i = @as(std.meta.Int(true, T.bit_count + 1), min); var i = @as(std.meta.Int(true, @typeInfo(T).Int.bits + 1), min);
while (i <= max) : (i += 1) try test_write_leb128(@intCast(T, i)); while (i <= max) : (i += 1) try test_write_leb128(@intCast(T, i));
} }

View File

@ -91,7 +91,7 @@ pub fn format(
if (@typeInfo(@TypeOf(args)) != .Struct) { if (@typeInfo(@TypeOf(args)) != .Struct) {
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(args))); @compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(args)));
} }
if (args.len > ArgSetType.bit_count) { if (args.len > @typeInfo(ArgSetType).Int.bits) {
@compileError("32 arguments max are supported per format call"); @compileError("32 arguments max are supported per format call");
} }
@ -325,7 +325,7 @@ pub fn formatType(
max_depth: usize, max_depth: usize,
) @TypeOf(writer).Error!void { ) @TypeOf(writer).Error!void {
if (comptime std.mem.eql(u8, fmt, "*")) { if (comptime std.mem.eql(u8, fmt, "*")) {
try writer.writeAll(@typeName(@TypeOf(value).Child)); try writer.writeAll(@typeName(@typeInfo(@TypeOf(value)).Pointer.child));
try writer.writeAll("@"); try writer.writeAll("@");
try formatInt(@ptrToInt(value), 16, false, FormatOptions{}, writer); try formatInt(@ptrToInt(value), 16, false, FormatOptions{}, writer);
return; return;
@ -430,12 +430,12 @@ pub fn formatType(
if (info.child == u8) { if (info.child == u8) {
return formatText(value, fmt, options, writer); return formatText(value, fmt, options, writer);
} }
return format(writer, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }); return format(writer, "{}@{x}", .{ @typeName(@typeInfo(T).Pointer.child), @ptrToInt(value) });
}, },
.Enum, .Union, .Struct => { .Enum, .Union, .Struct => {
return formatType(value.*, fmt, options, writer, max_depth); return formatType(value.*, fmt, options, writer, max_depth);
}, },
else => return format(writer, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }), else => return format(writer, "{}@{x}", .{ @typeName(@typeInfo(T).Pointer.child), @ptrToInt(value) }),
}, },
.Many, .C => { .Many, .C => {
if (ptr_info.sentinel) |sentinel| { if (ptr_info.sentinel) |sentinel| {
@ -446,7 +446,7 @@ pub fn formatType(
return formatText(mem.span(value), fmt, options, writer); return formatText(mem.span(value), fmt, options, writer);
} }
} }
return format(writer, "{}@{x}", .{ @typeName(T.Child), @ptrToInt(value) }); return format(writer, "{}@{x}", .{ @typeName(@typeInfo(T).Pointer.child), @ptrToInt(value) });
}, },
.Slice => { .Slice => {
if (fmt.len > 0 and ((fmt[0] == 'x') or (fmt[0] == 'X'))) { if (fmt.len > 0 and ((fmt[0] == 'x') or (fmt[0] == 'X'))) {
@ -536,7 +536,7 @@ pub fn formatIntValue(
radix = 10; radix = 10;
uppercase = false; uppercase = false;
} else if (comptime std.mem.eql(u8, fmt, "c")) { } else if (comptime std.mem.eql(u8, fmt, "c")) {
if (@TypeOf(int_value).bit_count <= 8) { if (@typeInfo(@TypeOf(int_value)).Int.bits <= 8) {
return formatAsciiChar(@as(u8, int_value), options, writer); return formatAsciiChar(@as(u8, int_value), options, writer);
} else { } else {
@compileError("Cannot print integer that is larger than 8 bits as a ascii"); @compileError("Cannot print integer that is larger than 8 bits as a ascii");
@ -945,7 +945,7 @@ pub fn formatInt(
} else } else
value; value;
if (@TypeOf(int_value).is_signed) { if (@typeInfo(@TypeOf(int_value)).Int.is_signed) {
return formatIntSigned(int_value, base, uppercase, options, writer); return formatIntSigned(int_value, base, uppercase, options, writer);
} else { } else {
return formatIntUnsigned(int_value, base, uppercase, options, writer); return formatIntUnsigned(int_value, base, uppercase, options, writer);
@ -987,9 +987,10 @@ fn formatIntUnsigned(
writer: anytype, writer: anytype,
) !void { ) !void {
assert(base >= 2); assert(base >= 2);
var buf: [math.max(@TypeOf(value).bit_count, 1)]u8 = undefined; const value_info = @typeInfo(@TypeOf(value)).Int;
const min_int_bits = comptime math.max(@TypeOf(value).bit_count, @TypeOf(base).bit_count); var buf: [math.max(value_info.bits, 1)]u8 = undefined;
const MinInt = std.meta.Int(@TypeOf(value).is_signed, min_int_bits); const min_int_bits = comptime math.max(value_info.bits, @typeInfo(@TypeOf(base)).Int.bits);
const MinInt = std.meta.Int(value_info.is_signed, min_int_bits);
var a: MinInt = value; var a: MinInt = value;
var index: usize = buf.len; var index: usize = buf.len;

View File

@ -372,7 +372,7 @@ test "fmt.parseFloat" {
const epsilon = 1e-7; const epsilon = 1e-7;
inline for ([_]type{ f16, f32, f64, f128 }) |T| { inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const Z = std.meta.Int(false, T.bit_count); const Z = std.meta.Int(false, @typeInfo(T).Float.bits);
testing.expectError(error.InvalidCharacter, parseFloat(T, "")); testing.expectError(error.InvalidCharacter, parseFloat(T, ""));
testing.expectError(error.InvalidCharacter, parseFloat(T, " 1")); testing.expectError(error.InvalidCharacter, parseFloat(T, " 1"));

View File

@ -113,7 +113,7 @@ pub fn hash(hasher: anytype, key: anytype, comptime strat: HashStrategy) void {
.Array => hashArray(hasher, key, strat), .Array => hashArray(hasher, key, strat),
.Vector => |info| { .Vector => |info| {
if (info.child.bit_count % 8 == 0) { if (std.meta.bitCount(info.child) % 8 == 0) {
// If there's no unused bits in the child type, we can just hash // If there's no unused bits in the child type, we can just hash
// this as an array of bytes. // this as an array of bytes.
hasher.update(mem.asBytes(&key)); hasher.update(mem.asBytes(&key));

View File

@ -952,7 +952,7 @@ pub fn testAllocatorLargeAlignment(base_allocator: *mem.Allocator) mem.Allocator
// very near usize? // very near usize?
if (mem.page_size << 2 > maxInt(usize)) return; if (mem.page_size << 2 > maxInt(usize)) return;
const USizeShift = std.meta.Int(false, std.math.log2(usize.bit_count)); const USizeShift = std.meta.Int(false, std.math.log2(std.meta.bitCount(usize)));
const large_align = @as(u29, mem.page_size << 2); const large_align = @as(u29, mem.page_size << 2);
var align_mask: usize = undefined; var align_mask: usize = undefined;

View File

@ -198,28 +198,28 @@ pub fn Reader(
/// Reads a native-endian integer /// Reads a native-endian integer
pub fn readIntNative(self: Self, comptime T: type) !T { pub fn readIntNative(self: Self, comptime T: type) !T {
const bytes = try self.readBytesNoEof((T.bit_count + 7) / 8); const bytes = try self.readBytesNoEof((@typeInfo(T).Int.bits + 7) / 8);
return mem.readIntNative(T, &bytes); return mem.readIntNative(T, &bytes);
} }
/// Reads a foreign-endian integer /// Reads a foreign-endian integer
pub fn readIntForeign(self: Self, comptime T: type) !T { pub fn readIntForeign(self: Self, comptime T: type) !T {
const bytes = try self.readBytesNoEof((T.bit_count + 7) / 8); const bytes = try self.readBytesNoEof((@typeInfo(T).Int.bits + 7) / 8);
return mem.readIntForeign(T, &bytes); return mem.readIntForeign(T, &bytes);
} }
pub fn readIntLittle(self: Self, comptime T: type) !T { pub fn readIntLittle(self: Self, comptime T: type) !T {
const bytes = try self.readBytesNoEof((T.bit_count + 7) / 8); const bytes = try self.readBytesNoEof((@typeInfo(T).Int.bits + 7) / 8);
return mem.readIntLittle(T, &bytes); return mem.readIntLittle(T, &bytes);
} }
pub fn readIntBig(self: Self, comptime T: type) !T { pub fn readIntBig(self: Self, comptime T: type) !T {
const bytes = try self.readBytesNoEof((T.bit_count + 7) / 8); const bytes = try self.readBytesNoEof((@typeInfo(T).Int.bits + 7) / 8);
return mem.readIntBig(T, &bytes); return mem.readIntBig(T, &bytes);
} }
pub fn readInt(self: Self, comptime T: type, endian: builtin.Endian) !T { pub fn readInt(self: Self, comptime T: type, endian: builtin.Endian) !T {
const bytes = try self.readBytesNoEof((T.bit_count + 7) / 8); const bytes = try self.readBytesNoEof((@typeInfo(T).Int.bits + 7) / 8);
return mem.readInt(T, &bytes, endian); return mem.readInt(T, &bytes, endian);
} }

View File

@ -60,7 +60,7 @@ pub fn Deserializer(comptime endian: builtin.Endian, comptime packing: Packing,
const U = std.meta.Int(false, t_bit_count); const U = std.meta.Int(false, t_bit_count);
const Log2U = math.Log2Int(U); const Log2U = math.Log2Int(U);
const int_size = (U.bit_count + 7) / 8; const int_size = (t_bit_count + 7) / 8;
if (packing == .Bit) { if (packing == .Bit) {
const result = try self.in_stream.readBitsNoEof(U, t_bit_count); const result = try self.in_stream.readBitsNoEof(U, t_bit_count);
@ -73,7 +73,7 @@ pub fn Deserializer(comptime endian: builtin.Endian, comptime packing: Packing,
if (int_size == 1) { if (int_size == 1) {
if (t_bit_count == 8) return @bitCast(T, buffer[0]); if (t_bit_count == 8) return @bitCast(T, buffer[0]);
const PossiblySignedByte = std.meta.Int(T.is_signed, 8); const PossiblySignedByte = std.meta.Int(@typeInfo(T).Int.is_signed, 8);
return @truncate(T, @bitCast(PossiblySignedByte, buffer[0])); return @truncate(T, @bitCast(PossiblySignedByte, buffer[0]));
} }
@ -247,7 +247,7 @@ pub fn Serializer(comptime endian: builtin.Endian, comptime packing: Packing, co
const U = std.meta.Int(false, t_bit_count); const U = std.meta.Int(false, t_bit_count);
const Log2U = math.Log2Int(U); const Log2U = math.Log2Int(U);
const int_size = (U.bit_count + 7) / 8; const int_size = (t_bit_count + 7) / 8;
const u_value = @bitCast(U, value); const u_value = @bitCast(U, value);

View File

@ -53,7 +53,7 @@ pub fn Writer(
/// Write a native-endian integer. /// Write a native-endian integer.
/// TODO audit non-power-of-two int sizes /// TODO audit non-power-of-two int sizes
pub fn writeIntNative(self: Self, comptime T: type, value: T) Error!void { pub fn writeIntNative(self: Self, comptime T: type, value: T) Error!void {
var bytes: [(T.bit_count + 7) / 8]u8 = undefined; var bytes: [(@typeInfo(T).Int.bits + 7) / 8]u8 = undefined;
mem.writeIntNative(T, &bytes, value); mem.writeIntNative(T, &bytes, value);
return self.writeAll(&bytes); return self.writeAll(&bytes);
} }
@ -61,28 +61,28 @@ pub fn Writer(
/// Write a foreign-endian integer. /// Write a foreign-endian integer.
/// TODO audit non-power-of-two int sizes /// TODO audit non-power-of-two int sizes
pub fn writeIntForeign(self: Self, comptime T: type, value: T) Error!void { pub fn writeIntForeign(self: Self, comptime T: type, value: T) Error!void {
var bytes: [(T.bit_count + 7) / 8]u8 = undefined; var bytes: [(@typeInfo(T).Int.bits + 7) / 8]u8 = undefined;
mem.writeIntForeign(T, &bytes, value); mem.writeIntForeign(T, &bytes, value);
return self.writeAll(&bytes); return self.writeAll(&bytes);
} }
/// TODO audit non-power-of-two int sizes /// TODO audit non-power-of-two int sizes
pub fn writeIntLittle(self: Self, comptime T: type, value: T) Error!void { pub fn writeIntLittle(self: Self, comptime T: type, value: T) Error!void {
var bytes: [(T.bit_count + 7) / 8]u8 = undefined; var bytes: [(@typeInfo(T).Int.bits + 7) / 8]u8 = undefined;
mem.writeIntLittle(T, &bytes, value); mem.writeIntLittle(T, &bytes, value);
return self.writeAll(&bytes); return self.writeAll(&bytes);
} }
/// TODO audit non-power-of-two int sizes /// TODO audit non-power-of-two int sizes
pub fn writeIntBig(self: Self, comptime T: type, value: T) Error!void { pub fn writeIntBig(self: Self, comptime T: type, value: T) Error!void {
var bytes: [(T.bit_count + 7) / 8]u8 = undefined; var bytes: [(@typeInfo(T).Int.bits + 7) / 8]u8 = undefined;
mem.writeIntBig(T, &bytes, value); mem.writeIntBig(T, &bytes, value);
return self.writeAll(&bytes); return self.writeAll(&bytes);
} }
/// TODO audit non-power-of-two int sizes /// TODO audit non-power-of-two int sizes
pub fn writeInt(self: Self, comptime T: type, value: T, endian: builtin.Endian) Error!void { pub fn writeInt(self: Self, comptime T: type, value: T, endian: builtin.Endian) Error!void {
var bytes: [(T.bit_count + 7) / 8]u8 = undefined; var bytes: [(@typeInfo(T).Int.bits + 7) / 8]u8 = undefined;
mem.writeInt(T, &bytes, value, endian); mem.writeInt(T, &bytes, value, endian);
return self.writeAll(&bytes); return self.writeAll(&bytes);
} }

View File

@ -195,7 +195,7 @@ test "" {
pub fn floatMantissaBits(comptime T: type) comptime_int { pub fn floatMantissaBits(comptime T: type) comptime_int {
assert(@typeInfo(T) == .Float); assert(@typeInfo(T) == .Float);
return switch (T.bit_count) { return switch (@typeInfo(T).Float.bits) {
16 => 10, 16 => 10,
32 => 23, 32 => 23,
64 => 52, 64 => 52,
@ -208,7 +208,7 @@ pub fn floatMantissaBits(comptime T: type) comptime_int {
pub fn floatExponentBits(comptime T: type) comptime_int { pub fn floatExponentBits(comptime T: type) comptime_int {
assert(@typeInfo(T) == .Float); assert(@typeInfo(T) == .Float);
return switch (T.bit_count) { return switch (@typeInfo(T).Float.bits) {
16 => 5, 16 => 5,
32 => 8, 32 => 8,
64 => 11, 64 => 11,
@ -347,9 +347,9 @@ pub fn shlExact(comptime T: type, a: T, shift_amt: Log2Int(T)) !T {
/// A negative shift amount results in a right shift. /// A negative shift amount results in a right shift.
pub fn shl(comptime T: type, a: T, shift_amt: anytype) T { pub fn shl(comptime T: type, a: T, shift_amt: anytype) T {
const abs_shift_amt = absCast(shift_amt); const abs_shift_amt = absCast(shift_amt);
const casted_shift_amt = if (abs_shift_amt >= T.bit_count) return 0 else @intCast(Log2Int(T), abs_shift_amt); const casted_shift_amt = if (abs_shift_amt >= @typeInfo(T).Int.bits) return 0 else @intCast(Log2Int(T), abs_shift_amt);
if (@TypeOf(shift_amt) == comptime_int or @TypeOf(shift_amt).is_signed) { if (@TypeOf(shift_amt) == comptime_int or @typeInfo(@TypeOf(shift_amt)).Int.is_signed) {
if (shift_amt < 0) { if (shift_amt < 0) {
return a >> casted_shift_amt; return a >> casted_shift_amt;
} }
@ -373,9 +373,9 @@ test "math.shl" {
/// A negative shift amount results in a left shift. /// A negative shift amount results in a left shift.
pub fn shr(comptime T: type, a: T, shift_amt: anytype) T { pub fn shr(comptime T: type, a: T, shift_amt: anytype) T {
const abs_shift_amt = absCast(shift_amt); const abs_shift_amt = absCast(shift_amt);
const casted_shift_amt = if (abs_shift_amt >= T.bit_count) return 0 else @intCast(Log2Int(T), abs_shift_amt); const casted_shift_amt = if (abs_shift_amt >= @typeInfo(T).Int.bits) return 0 else @intCast(Log2Int(T), abs_shift_amt);
if (@TypeOf(shift_amt) == comptime_int or @TypeOf(shift_amt).is_signed) { if (@TypeOf(shift_amt) == comptime_int or @typeInfo(@TypeOf(shift_amt)).Int.is_signed) {
if (shift_amt >= 0) { if (shift_amt >= 0) {
return a >> casted_shift_amt; return a >> casted_shift_amt;
} else { } else {
@ -400,11 +400,11 @@ test "math.shr" {
/// Rotates right. Only unsigned values can be rotated. /// Rotates right. Only unsigned values can be rotated.
/// Negative shift values results in shift modulo the bit count. /// Negative shift values results in shift modulo the bit count.
pub fn rotr(comptime T: type, x: T, r: anytype) T { pub fn rotr(comptime T: type, x: T, r: anytype) T {
if (T.is_signed) { if (@typeInfo(T).Int.is_signed) {
@compileError("cannot rotate signed integer"); @compileError("cannot rotate signed integer");
} else { } else {
const ar = @mod(r, T.bit_count); const ar = @mod(r, @typeInfo(T).Int.bits);
return shr(T, x, ar) | shl(T, x, T.bit_count - ar); return shr(T, x, ar) | shl(T, x, @typeInfo(T).Int.bits - ar);
} }
} }
@ -419,11 +419,11 @@ test "math.rotr" {
/// Rotates left. Only unsigned values can be rotated. /// Rotates left. Only unsigned values can be rotated.
/// Negative shift values results in shift modulo the bit count. /// Negative shift values results in shift modulo the bit count.
pub fn rotl(comptime T: type, x: T, r: anytype) T { pub fn rotl(comptime T: type, x: T, r: anytype) T {
if (T.is_signed) { if (@typeInfo(T).Int.is_signed) {
@compileError("cannot rotate signed integer"); @compileError("cannot rotate signed integer");
} else { } else {
const ar = @mod(r, T.bit_count); const ar = @mod(r, @typeInfo(T).Int.bits);
return shl(T, x, ar) | shr(T, x, T.bit_count - ar); return shl(T, x, ar) | shr(T, x, @typeInfo(T).Int.bits - ar);
} }
} }
@ -438,7 +438,7 @@ test "math.rotl" {
pub fn Log2Int(comptime T: type) type { pub fn Log2Int(comptime T: type) type {
// comptime ceil log2 // comptime ceil log2
comptime var count = 0; comptime var count = 0;
comptime var s = T.bit_count - 1; comptime var s = @typeInfo(T).Int.bits - 1;
inline while (s != 0) : (s >>= 1) { inline while (s != 0) : (s >>= 1) {
count += 1; count += 1;
} }
@ -524,7 +524,7 @@ fn testOverflow() void {
pub fn absInt(x: anytype) !@TypeOf(x) { pub fn absInt(x: anytype) !@TypeOf(x) {
const T = @TypeOf(x); const T = @TypeOf(x);
comptime assert(@typeInfo(T) == .Int); // must pass an integer to absInt comptime assert(@typeInfo(T) == .Int); // must pass an integer to absInt
comptime assert(T.is_signed); // must pass a signed integer to absInt comptime assert(@typeInfo(T).Int.is_signed); // must pass a signed integer to absInt
if (x == minInt(@TypeOf(x))) { if (x == minInt(@TypeOf(x))) {
return error.Overflow; return error.Overflow;
@ -557,7 +557,7 @@ fn testAbsFloat() void {
pub fn divTrunc(comptime T: type, numerator: T, denominator: T) !T { pub fn divTrunc(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false); @setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero; if (denominator == 0) return error.DivisionByZero;
if (@typeInfo(T) == .Int and T.is_signed and numerator == minInt(T) and denominator == -1) return error.Overflow; if (@typeInfo(T) == .Int and @typeInfo(T).Int.is_signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
return @divTrunc(numerator, denominator); return @divTrunc(numerator, denominator);
} }
@ -578,7 +578,7 @@ fn testDivTrunc() void {
pub fn divFloor(comptime T: type, numerator: T, denominator: T) !T { pub fn divFloor(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false); @setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero; if (denominator == 0) return error.DivisionByZero;
if (@typeInfo(T) == .Int and T.is_signed and numerator == minInt(T) and denominator == -1) return error.Overflow; if (@typeInfo(T) == .Int and @typeInfo(T).Int.is_signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
return @divFloor(numerator, denominator); return @divFloor(numerator, denominator);
} }
@ -652,7 +652,7 @@ fn testDivCeil() void {
pub fn divExact(comptime T: type, numerator: T, denominator: T) !T { pub fn divExact(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false); @setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero; if (denominator == 0) return error.DivisionByZero;
if (@typeInfo(T) == .Int and T.is_signed and numerator == minInt(T) and denominator == -1) return error.Overflow; if (@typeInfo(T) == .Int and @typeInfo(T).Int.is_signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
const result = @divTrunc(numerator, denominator); const result = @divTrunc(numerator, denominator);
if (result * denominator != numerator) return error.UnexpectedRemainder; if (result * denominator != numerator) return error.UnexpectedRemainder;
return result; return result;
@ -757,10 +757,10 @@ test "math.absCast" {
/// Returns the negation of the integer parameter. /// Returns the negation of the integer parameter.
/// Result is a signed integer. /// Result is a signed integer.
pub fn negateCast(x: anytype) !std.meta.Int(true, @TypeOf(x).bit_count) { pub fn negateCast(x: anytype) !std.meta.Int(true, std.meta.bitCount(@TypeOf(x))) {
if (@TypeOf(x).is_signed) return negate(x); if (@typeInfo(@TypeOf(x)).Int.is_signed) return negate(x);
const int = std.meta.Int(true, @TypeOf(x).bit_count); const int = std.meta.Int(true, std.meta.bitCount(@TypeOf(x)));
if (x > -minInt(int)) return error.Overflow; if (x > -minInt(int)) return error.Overflow;
if (x == -minInt(int)) return minInt(int); if (x == -minInt(int)) return minInt(int);
@ -823,7 +823,7 @@ pub fn floorPowerOfTwo(comptime T: type, value: T) T {
var x = value; var x = value;
comptime var i = 1; comptime var i = 1;
inline while (T.bit_count > i) : (i *= 2) { inline while (@typeInfo(T).Int.bits > i) : (i *= 2) {
x |= (x >> i); x |= (x >> i);
} }
@ -847,13 +847,13 @@ fn testFloorPowerOfTwo() void {
/// Returns the next power of two (if the value is not already a power of two). /// Returns the next power of two (if the value is not already a power of two).
/// Only unsigned integers can be used. Zero is not an allowed input. /// Only unsigned integers can be used. Zero is not an allowed input.
/// Result is a type with 1 more bit than the input type. /// Result is a type with 1 more bit than the input type.
pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.Int(T.is_signed, T.bit_count + 1) { pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.Int(@typeInfo(T).Int.is_signed, @typeInfo(T).Int.bits + 1) {
comptime assert(@typeInfo(T) == .Int); comptime assert(@typeInfo(T) == .Int);
comptime assert(!T.is_signed); comptime assert(!@typeInfo(T).Int.is_signed);
assert(value != 0); assert(value != 0);
comptime const PromotedType = std.meta.Int(T.is_signed, T.bit_count + 1); comptime const PromotedType = std.meta.Int(@typeInfo(T).Int.is_signed, @typeInfo(T).Int.bits + 1);
comptime const shiftType = std.math.Log2Int(PromotedType); comptime const shiftType = std.math.Log2Int(PromotedType);
return @as(PromotedType, 1) << @intCast(shiftType, T.bit_count - @clz(T, value - 1)); return @as(PromotedType, 1) << @intCast(shiftType, @typeInfo(T).Int.bits - @clz(T, value - 1));
} }
/// Returns the next power of two (if the value is not already a power of two). /// Returns the next power of two (if the value is not already a power of two).
@ -861,9 +861,10 @@ pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.Int(T.is_signe
/// If the value doesn't fit, returns an error. /// If the value doesn't fit, returns an error.
pub fn ceilPowerOfTwo(comptime T: type, value: T) (error{Overflow}!T) { pub fn ceilPowerOfTwo(comptime T: type, value: T) (error{Overflow}!T) {
comptime assert(@typeInfo(T) == .Int); comptime assert(@typeInfo(T) == .Int);
comptime assert(!T.is_signed); const info = @typeInfo(T).Int;
comptime const PromotedType = std.meta.Int(T.is_signed, T.bit_count + 1); comptime assert(!info.is_signed);
comptime const overflowBit = @as(PromotedType, 1) << T.bit_count; comptime const PromotedType = std.meta.Int(info.is_signed, info.bits + 1);
comptime const overflowBit = @as(PromotedType, 1) << info.bits;
var x = ceilPowerOfTwoPromote(T, value); var x = ceilPowerOfTwoPromote(T, value);
if (overflowBit & x != 0) { if (overflowBit & x != 0) {
return error.Overflow; return error.Overflow;
@ -911,7 +912,7 @@ fn testCeilPowerOfTwo() !void {
pub fn log2_int(comptime T: type, x: T) Log2Int(T) { pub fn log2_int(comptime T: type, x: T) Log2Int(T) {
assert(x != 0); assert(x != 0);
return @intCast(Log2Int(T), T.bit_count - 1 - @clz(T, x)); return @intCast(Log2Int(T), @typeInfo(T).Int.bits - 1 - @clz(T, x));
} }
pub fn log2_int_ceil(comptime T: type, x: T) Log2Int(T) { pub fn log2_int_ceil(comptime T: type, x: T) Log2Int(T) {
@ -1008,8 +1009,8 @@ test "max value type" {
testing.expect(x == 2147483647); testing.expect(x == 2147483647);
} }
pub fn mulWide(comptime T: type, a: T, b: T) std.meta.Int(T.is_signed, T.bit_count * 2) { pub fn mulWide(comptime T: type, a: T, b: T) std.meta.Int(@typeInfo(T).Int.is_signed, @typeInfo(T).Int.bits * 2) {
const ResultInt = std.meta.Int(T.is_signed, T.bit_count * 2); const ResultInt = std.meta.Int(@typeInfo(T).Int.is_signed, @typeInfo(T).Int.bits * 2);
return @as(ResultInt, a) * @as(ResultInt, b); return @as(ResultInt, a) * @as(ResultInt, b);
} }

View File

@ -9,14 +9,15 @@ const assert = std.debug.assert;
pub const Rational = @import("big/rational.zig").Rational; pub const Rational = @import("big/rational.zig").Rational;
pub const int = @import("big/int.zig"); pub const int = @import("big/int.zig");
pub const Limb = usize; pub const Limb = usize;
pub const DoubleLimb = std.meta.IntType(false, 2 * Limb.bit_count); const limb_info = @typeInfo(Limb).Int;
pub const SignedDoubleLimb = std.meta.IntType(true, DoubleLimb.bit_count); pub const DoubleLimb = std.meta.IntType(false, 2 * limb_info.bits);
pub const SignedDoubleLimb = std.meta.IntType(true, 2 * limb_info.bits);
pub const Log2Limb = std.math.Log2Int(Limb); pub const Log2Limb = std.math.Log2Int(Limb);
comptime { comptime {
assert(std.math.floorPowerOfTwo(usize, Limb.bit_count) == Limb.bit_count); assert(std.math.floorPowerOfTwo(usize, limb_info.bits) == limb_info.bits);
assert(Limb.bit_count <= 64); // u128 set is unsupported assert(limb_info.bits <= 64); // u128 set is unsupported
assert(Limb.is_signed == false); assert(limb_info.is_signed == false);
} }
test "" { test "" {

View File

@ -6,6 +6,7 @@
const std = @import("../../std.zig"); const std = @import("../../std.zig");
const math = std.math; const math = std.math;
const Limb = std.math.big.Limb; const Limb = std.math.big.Limb;
const limb_bits = @typeInfo(Limb).Int.bits;
const DoubleLimb = std.math.big.DoubleLimb; const DoubleLimb = std.math.big.DoubleLimb;
const SignedDoubleLimb = std.math.big.SignedDoubleLimb; const SignedDoubleLimb = std.math.big.SignedDoubleLimb;
const Log2Limb = std.math.big.Log2Limb; const Log2Limb = std.math.big.Log2Limb;
@ -28,7 +29,7 @@ pub fn calcLimbLen(scalar: anytype) usize {
}, },
.ComptimeInt => { .ComptimeInt => {
const w_value = if (scalar < 0) -scalar else scalar; const w_value = if (scalar < 0) -scalar else scalar;
return @divFloor(math.log2(w_value), Limb.bit_count) + 1; return @divFloor(math.log2(w_value), limb_bits) + 1;
}, },
else => @compileError("parameter must be a primitive integer type"), else => @compileError("parameter must be a primitive integer type"),
} }
@ -54,7 +55,7 @@ pub fn calcSetStringLimbsBufferLen(base: u8, string_len: usize) usize {
} }
pub fn calcSetStringLimbCount(base: u8, string_len: usize) usize { pub fn calcSetStringLimbCount(base: u8, string_len: usize) usize {
return (string_len + (Limb.bit_count / base - 1)) / (Limb.bit_count / base); return (string_len + (limb_bits / base - 1)) / (limb_bits / base);
} }
/// a + b * c + *carry, sets carry to the overflow bits /// a + b * c + *carry, sets carry to the overflow bits
@ -68,7 +69,7 @@ pub fn addMulLimbWithCarry(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
// r2 = b * c // r2 = b * c
const bc = @as(DoubleLimb, math.mulWide(Limb, b, c)); const bc = @as(DoubleLimb, math.mulWide(Limb, b, c));
const r2 = @truncate(Limb, bc); const r2 = @truncate(Limb, bc);
const c2 = @truncate(Limb, bc >> Limb.bit_count); const c2 = @truncate(Limb, bc >> limb_bits);
// r1 = r1 + r2 // r1 = r1 + r2
const c3: Limb = @boolToInt(@addWithOverflow(Limb, r1, r2, &r1)); const c3: Limb = @boolToInt(@addWithOverflow(Limb, r1, r2, &r1));
@ -181,7 +182,7 @@ pub const Mutable = struct {
switch (@typeInfo(T)) { switch (@typeInfo(T)) {
.Int => |info| { .Int => |info| {
const UT = if (T.is_signed) std.meta.Int(false, T.bit_count - 1) else T; const UT = if (info.is_signed) std.meta.Int(false, info.bits - 1) else T;
const needed_limbs = @sizeOf(UT) / @sizeOf(Limb); const needed_limbs = @sizeOf(UT) / @sizeOf(Limb);
assert(needed_limbs <= self.limbs.len); // value too big assert(needed_limbs <= self.limbs.len); // value too big
@ -190,7 +191,7 @@ pub const Mutable = struct {
var w_value: UT = if (value < 0) @intCast(UT, -value) else @intCast(UT, value); var w_value: UT = if (value < 0) @intCast(UT, -value) else @intCast(UT, value);
if (info.bits <= Limb.bit_count) { if (info.bits <= limb_bits) {
self.limbs[0] = @as(Limb, w_value); self.limbs[0] = @as(Limb, w_value);
self.len += 1; self.len += 1;
} else { } else {
@ -200,15 +201,15 @@ pub const Mutable = struct {
self.len += 1; self.len += 1;
// TODO: shift == 64 at compile-time fails. Fails on u128 limbs. // TODO: shift == 64 at compile-time fails. Fails on u128 limbs.
w_value >>= Limb.bit_count / 2; w_value >>= limb_bits / 2;
w_value >>= Limb.bit_count / 2; w_value >>= limb_bits / 2;
} }
} }
}, },
.ComptimeInt => { .ComptimeInt => {
comptime var w_value = if (value < 0) -value else value; comptime var w_value = if (value < 0) -value else value;
const req_limbs = @divFloor(math.log2(w_value), Limb.bit_count) + 1; const req_limbs = @divFloor(math.log2(w_value), limb_bits) + 1;
assert(req_limbs <= self.limbs.len); // value too big assert(req_limbs <= self.limbs.len); // value too big
self.len = req_limbs; self.len = req_limbs;
@ -217,14 +218,14 @@ pub const Mutable = struct {
if (w_value <= maxInt(Limb)) { if (w_value <= maxInt(Limb)) {
self.limbs[0] = w_value; self.limbs[0] = w_value;
} else { } else {
const mask = (1 << Limb.bit_count) - 1; const mask = (1 << limb_bits) - 1;
comptime var i = 0; comptime var i = 0;
inline while (w_value != 0) : (i += 1) { inline while (w_value != 0) : (i += 1) {
self.limbs[i] = w_value & mask; self.limbs[i] = w_value & mask;
w_value >>= Limb.bit_count / 2; w_value >>= limb_bits / 2;
w_value >>= Limb.bit_count / 2; w_value >>= limb_bits / 2;
} }
} }
}, },
@ -506,7 +507,7 @@ pub const Mutable = struct {
/// `a.limbs.len + (shift / (@sizeOf(Limb) * 8))`. /// `a.limbs.len + (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftLeft(r: *Mutable, a: Const, shift: usize) void { pub fn shiftLeft(r: *Mutable, a: Const, shift: usize) void {
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift); llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / Limb.bit_count) + 1); r.normalize(a.limbs.len + (shift / limb_bits) + 1);
r.positive = a.positive; r.positive = a.positive;
} }
@ -516,7 +517,7 @@ pub const Mutable = struct {
/// Asserts there is enough memory to fit the result. The upper bound Limb count is /// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len - (shift / (@sizeOf(Limb) * 8))`. /// `a.limbs.len - (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftRight(r: *Mutable, a: Const, shift: usize) void { pub fn shiftRight(r: *Mutable, a: Const, shift: usize) void {
if (a.limbs.len <= shift / Limb.bit_count) { if (a.limbs.len <= shift / limb_bits) {
r.len = 1; r.len = 1;
r.positive = true; r.positive = true;
r.limbs[0] = 0; r.limbs[0] = 0;
@ -524,7 +525,7 @@ pub const Mutable = struct {
} }
const r_len = llshr(r.limbs[0..], a.limbs[0..a.limbs.len], shift); const r_len = llshr(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.len = a.limbs.len - (shift / Limb.bit_count); r.len = a.limbs.len - (shift / limb_bits);
r.positive = a.positive; r.positive = a.positive;
} }
@ -772,7 +773,7 @@ pub const Mutable = struct {
} }
if (ab_zero_limb_count != 0) { if (ab_zero_limb_count != 0) {
rem.shiftLeft(rem.toConst(), ab_zero_limb_count * Limb.bit_count); rem.shiftLeft(rem.toConst(), ab_zero_limb_count * limb_bits);
} }
} }
@ -803,10 +804,10 @@ pub const Mutable = struct {
}; };
tmp.limbs[0] = 0; tmp.limbs[0] = 0;
// Normalize so y > Limb.bit_count / 2 (i.e. leading bit is set) and even // Normalize so y > limb_bits / 2 (i.e. leading bit is set) and even
var norm_shift = @clz(Limb, y.limbs[y.len - 1]); var norm_shift = @clz(Limb, y.limbs[y.len - 1]);
if (norm_shift == 0 and y.toConst().isOdd()) { if (norm_shift == 0 and y.toConst().isOdd()) {
norm_shift = Limb.bit_count; norm_shift = limb_bits;
} }
x.shiftLeft(x.toConst(), norm_shift); x.shiftLeft(x.toConst(), norm_shift);
y.shiftLeft(y.toConst(), norm_shift); y.shiftLeft(y.toConst(), norm_shift);
@ -820,7 +821,7 @@ pub const Mutable = struct {
mem.set(Limb, q.limbs[0..q.len], 0); mem.set(Limb, q.limbs[0..q.len], 0);
// 2. // 2.
tmp.shiftLeft(y.toConst(), Limb.bit_count * (n - t)); tmp.shiftLeft(y.toConst(), limb_bits * (n - t));
while (x.toConst().order(tmp.toConst()) != .lt) { while (x.toConst().order(tmp.toConst()) != .lt) {
q.limbs[n - t] += 1; q.limbs[n - t] += 1;
x.sub(x.toConst(), tmp.toConst()); x.sub(x.toConst(), tmp.toConst());
@ -833,7 +834,7 @@ pub const Mutable = struct {
if (x.limbs[i] == y.limbs[t]) { if (x.limbs[i] == y.limbs[t]) {
q.limbs[i - t - 1] = maxInt(Limb); q.limbs[i - t - 1] = maxInt(Limb);
} else { } else {
const num = (@as(DoubleLimb, x.limbs[i]) << Limb.bit_count) | @as(DoubleLimb, x.limbs[i - 1]); const num = (@as(DoubleLimb, x.limbs[i]) << limb_bits) | @as(DoubleLimb, x.limbs[i - 1]);
const z = @intCast(Limb, num / @as(DoubleLimb, y.limbs[t])); const z = @intCast(Limb, num / @as(DoubleLimb, y.limbs[t]));
q.limbs[i - t - 1] = if (z > maxInt(Limb)) maxInt(Limb) else @as(Limb, z); q.limbs[i - t - 1] = if (z > maxInt(Limb)) maxInt(Limb) else @as(Limb, z);
} }
@ -862,11 +863,11 @@ pub const Mutable = struct {
// 3.3 // 3.3
tmp.set(q.limbs[i - t - 1]); tmp.set(q.limbs[i - t - 1]);
tmp.mul(tmp.toConst(), y.toConst(), mul_limb_buf, allocator); tmp.mul(tmp.toConst(), y.toConst(), mul_limb_buf, allocator);
tmp.shiftLeft(tmp.toConst(), Limb.bit_count * (i - t - 1)); tmp.shiftLeft(tmp.toConst(), limb_bits * (i - t - 1));
x.sub(x.toConst(), tmp.toConst()); x.sub(x.toConst(), tmp.toConst());
if (!x.positive) { if (!x.positive) {
tmp.shiftLeft(y.toConst(), Limb.bit_count * (i - t - 1)); tmp.shiftLeft(y.toConst(), limb_bits * (i - t - 1));
x.add(x.toConst(), tmp.toConst()); x.add(x.toConst(), tmp.toConst());
q.limbs[i - t - 1] -= 1; q.limbs[i - t - 1] -= 1;
} }
@ -949,7 +950,7 @@ pub const Const = struct {
/// Returns the number of bits required to represent the absolute value of an integer. /// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Const) usize { pub fn bitCountAbs(self: Const) usize {
return (self.limbs.len - 1) * Limb.bit_count + (Limb.bit_count - @clz(Limb, self.limbs[self.limbs.len - 1])); return (self.limbs.len - 1) * limb_bits + (limb_bits - @clz(Limb, self.limbs[self.limbs.len - 1]));
} }
/// Returns the number of bits required to represent the integer in twos-complement form. /// Returns the number of bits required to represent the integer in twos-complement form.
@ -1019,10 +1020,10 @@ pub const Const = struct {
/// Returns an error if self cannot be narrowed into the requested type without truncation. /// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Const, comptime T: type) ConvertError!T { pub fn to(self: Const, comptime T: type) ConvertError!T {
switch (@typeInfo(T)) { switch (@typeInfo(T)) {
.Int => { .Int => |info| {
const UT = std.meta.Int(false, T.bit_count); const UT = std.meta.Int(false, info.bits);
if (self.bitCountTwosComp() > T.bit_count) { if (self.bitCountTwosComp() > info.bits) {
return error.TargetTooSmall; return error.TargetTooSmall;
} }
@ -1033,12 +1034,12 @@ pub const Const = struct {
} else { } else {
for (self.limbs[0..self.limbs.len]) |_, ri| { for (self.limbs[0..self.limbs.len]) |_, ri| {
const limb = self.limbs[self.limbs.len - ri - 1]; const limb = self.limbs[self.limbs.len - ri - 1];
r <<= Limb.bit_count; r <<= limb_bits;
r |= limb; r |= limb;
} }
} }
if (!T.is_signed) { if (!info.is_signed) {
return if (self.positive) @intCast(T, r) else error.NegativeIntoUnsigned; return if (self.positive) @intCast(T, r) else error.NegativeIntoUnsigned;
} else { } else {
if (self.positive) { if (self.positive) {
@ -1149,7 +1150,7 @@ pub const Const = struct {
outer: for (self.limbs[0..self.limbs.len]) |limb| { outer: for (self.limbs[0..self.limbs.len]) |limb| {
var shift: usize = 0; var shift: usize = 0;
while (shift < Limb.bit_count) : (shift += base_shift) { while (shift < limb_bits) : (shift += base_shift) {
const r = @intCast(u8, (limb >> @intCast(Log2Limb, shift)) & @as(Limb, base - 1)); const r = @intCast(u8, (limb >> @intCast(Log2Limb, shift)) & @as(Limb, base - 1));
const ch = std.fmt.digitToChar(r, uppercase); const ch = std.fmt.digitToChar(r, uppercase);
string[digits_len] = ch; string[digits_len] = ch;
@ -1295,7 +1296,7 @@ pub const Const = struct {
/// Memory is allocated as needed to ensure operations never overflow. The range /// Memory is allocated as needed to ensure operations never overflow. The range
/// is bounded only by available memory. /// is bounded only by available memory.
pub const Managed = struct { pub const Managed = struct {
pub const sign_bit: usize = 1 << (usize.bit_count - 1); pub const sign_bit: usize = 1 << (@typeInfo(usize).Int.bits - 1);
/// Default number of limbs to allocate on creation of a `Managed`. /// Default number of limbs to allocate on creation of a `Managed`.
pub const default_capacity = 4; pub const default_capacity = 4;
@ -1716,7 +1717,7 @@ pub const Managed = struct {
/// r = a << shift, in other words, r = a * 2^shift /// r = a << shift, in other words, r = a * 2^shift
pub fn shiftLeft(r: *Managed, a: Managed, shift: usize) !void { pub fn shiftLeft(r: *Managed, a: Managed, shift: usize) !void {
try r.ensureCapacity(a.len() + (shift / Limb.bit_count) + 1); try r.ensureCapacity(a.len() + (shift / limb_bits) + 1);
var m = r.toMutable(); var m = r.toMutable();
m.shiftLeft(a.toConst(), shift); m.shiftLeft(a.toConst(), shift);
r.setMetadata(m.positive, m.len); r.setMetadata(m.positive, m.len);
@ -1724,13 +1725,13 @@ pub const Managed = struct {
/// r = a >> shift /// r = a >> shift
pub fn shiftRight(r: *Managed, a: Managed, shift: usize) !void { pub fn shiftRight(r: *Managed, a: Managed, shift: usize) !void {
if (a.len() <= shift / Limb.bit_count) { if (a.len() <= shift / limb_bits) {
r.metadata = 1; r.metadata = 1;
r.limbs[0] = 0; r.limbs[0] = 0;
return; return;
} }
try r.ensureCapacity(a.len() - (shift / Limb.bit_count)); try r.ensureCapacity(a.len() - (shift / limb_bits));
var m = r.toMutable(); var m = r.toMutable();
m.shiftRight(a.toConst(), shift); m.shiftRight(a.toConst(), shift);
r.setMetadata(m.positive, m.len); r.setMetadata(m.positive, m.len);
@ -2021,7 +2022,7 @@ fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void {
rem.* = 0; rem.* = 0;
for (a) |_, ri| { for (a) |_, ri| {
const i = a.len - ri - 1; const i = a.len - ri - 1;
const pdiv = ((@as(DoubleLimb, rem.*) << Limb.bit_count) | a[i]); const pdiv = ((@as(DoubleLimb, rem.*) << limb_bits) | a[i]);
if (pdiv == 0) { if (pdiv == 0) {
quo[i] = 0; quo[i] = 0;
@ -2042,10 +2043,10 @@ fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void {
fn llshl(r: []Limb, a: []const Limb, shift: usize) void { fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety); @setRuntimeSafety(debug_safety);
assert(a.len >= 1); assert(a.len >= 1);
assert(r.len >= a.len + (shift / Limb.bit_count) + 1); assert(r.len >= a.len + (shift / limb_bits) + 1);
const limb_shift = shift / Limb.bit_count + 1; const limb_shift = shift / limb_bits + 1;
const interior_limb_shift = @intCast(Log2Limb, shift % Limb.bit_count); const interior_limb_shift = @intCast(Log2Limb, shift % limb_bits);
var carry: Limb = 0; var carry: Limb = 0;
var i: usize = 0; var i: usize = 0;
@ -2057,7 +2058,7 @@ fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
r[dst_i] = carry | @call(.{ .modifier = .always_inline }, math.shr, .{ r[dst_i] = carry | @call(.{ .modifier = .always_inline }, math.shr, .{
Limb, Limb,
src_digit, src_digit,
Limb.bit_count - @intCast(Limb, interior_limb_shift), limb_bits - @intCast(Limb, interior_limb_shift),
}); });
carry = (src_digit << interior_limb_shift); carry = (src_digit << interior_limb_shift);
} }
@ -2069,10 +2070,10 @@ fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
fn llshr(r: []Limb, a: []const Limb, shift: usize) void { fn llshr(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety); @setRuntimeSafety(debug_safety);
assert(a.len >= 1); assert(a.len >= 1);
assert(r.len >= a.len - (shift / Limb.bit_count)); assert(r.len >= a.len - (shift / limb_bits));
const limb_shift = shift / Limb.bit_count; const limb_shift = shift / limb_bits;
const interior_limb_shift = @intCast(Log2Limb, shift % Limb.bit_count); const interior_limb_shift = @intCast(Log2Limb, shift % limb_bits);
var carry: Limb = 0; var carry: Limb = 0;
var i: usize = 0; var i: usize = 0;
@ -2085,7 +2086,7 @@ fn llshr(r: []Limb, a: []const Limb, shift: usize) void {
carry = @call(.{ .modifier = .always_inline }, math.shl, .{ carry = @call(.{ .modifier = .always_inline }, math.shl, .{
Limb, Limb,
src_digit, src_digit,
Limb.bit_count - @intCast(Limb, interior_limb_shift), limb_bits - @intCast(Limb, interior_limb_shift),
}); });
} }
} }
@ -2135,7 +2136,7 @@ fn fixedIntFromSignedDoubleLimb(A: SignedDoubleLimb, storage: []Limb) Mutable {
const A_is_positive = A >= 0; const A_is_positive = A >= 0;
const Au = @intCast(DoubleLimb, if (A < 0) -A else A); const Au = @intCast(DoubleLimb, if (A < 0) -A else A);
storage[0] = @truncate(Limb, Au); storage[0] = @truncate(Limb, Au);
storage[1] = @truncate(Limb, Au >> Limb.bit_count); storage[1] = @truncate(Limb, Au >> limb_bits);
return .{ return .{
.limbs = storage[0..2], .limbs = storage[0..2],
.positive = A_is_positive, .positive = A_is_positive,

View File

@ -23,13 +23,13 @@ test "big.int comptime_int set" {
var a = try Managed.initSet(testing.allocator, s); var a = try Managed.initSet(testing.allocator, s);
defer a.deinit(); defer a.deinit();
const s_limb_count = 128 / Limb.bit_count; const s_limb_count = 128 / @typeInfo(Limb).Int.bits;
comptime var i: usize = 0; comptime var i: usize = 0;
inline while (i < s_limb_count) : (i += 1) { inline while (i < s_limb_count) : (i += 1) {
const result = @as(Limb, s & maxInt(Limb)); const result = @as(Limb, s & maxInt(Limb));
s >>= Limb.bit_count / 2; s >>= @typeInfo(Limb).Int.bits / 2;
s >>= Limb.bit_count / 2; s >>= @typeInfo(Limb).Int.bits / 2;
testing.expect(a.limbs[i] == result); testing.expect(a.limbs[i] == result);
} }
} }

View File

@ -136,7 +136,7 @@ pub const Rational = struct {
// Translated from golang.go/src/math/big/rat.go. // Translated from golang.go/src/math/big/rat.go.
debug.assert(@typeInfo(T) == .Float); debug.assert(@typeInfo(T) == .Float);
const UnsignedInt = std.meta.Int(false, T.bit_count); const UnsignedInt = std.meta.Int(false, @typeInfo(T).Float.bits);
const f_bits = @bitCast(UnsignedInt, f); const f_bits = @bitCast(UnsignedInt, f);
const exponent_bits = math.floatExponentBits(T); const exponent_bits = math.floatExponentBits(T);
@ -194,8 +194,8 @@ pub const Rational = struct {
// TODO: Indicate whether the result is not exact. // TODO: Indicate whether the result is not exact.
debug.assert(@typeInfo(T) == .Float); debug.assert(@typeInfo(T) == .Float);
const fsize = T.bit_count; const fsize = @typeInfo(T).Float.bits;
const BitReprType = std.meta.Int(false, T.bit_count); const BitReprType = std.meta.Int(false, fsize);
const msize = math.floatMantissaBits(T); const msize = math.floatMantissaBits(T);
const msize1 = msize + 1; const msize1 = msize + 1;
@ -475,16 +475,18 @@ pub const Rational = struct {
fn extractLowBits(a: Int, comptime T: type) T { fn extractLowBits(a: Int, comptime T: type) T {
testing.expect(@typeInfo(T) == .Int); testing.expect(@typeInfo(T) == .Int);
if (T.bit_count <= Limb.bit_count) { const t_bits = @typeInfo(T).Int.bits;
const limb_bits = @typeInfo(Limb).Int.bits;
if (t_bits <= limb_bits) {
return @truncate(T, a.limbs[0]); return @truncate(T, a.limbs[0]);
} else { } else {
var r: T = 0; var r: T = 0;
comptime var i: usize = 0; comptime var i: usize = 0;
// Remainder is always 0 since if T.bit_count >= Limb.bit_count -> Limb | T and both // Remainder is always 0 since if t_bits >= limb_bits -> Limb | T and both
// are powers of two. // are powers of two.
inline while (i < T.bit_count / Limb.bit_count) : (i += 1) { inline while (i < t_bits / limb_bits) : (i += 1) {
r |= math.shl(T, a.limbs[i], i * Limb.bit_count); r |= math.shl(T, a.limbs[i], i * limb_bits);
} }
return r; return r;

View File

@ -49,7 +49,7 @@ const pi4c = 2.69515142907905952645E-15;
const m4pi = 1.273239544735162542821171882678754627704620361328125; const m4pi = 1.273239544735162542821171882678754627704620361328125;
fn cos_(comptime T: type, x_: T) T { fn cos_(comptime T: type, x_: T) T {
const I = std.meta.Int(true, T.bit_count); const I = std.meta.Int(true, @typeInfo(T).Float.bits);
var x = x_; var x = x_;
if (math.isNan(x) or math.isInf(x)) { if (math.isNan(x) or math.isInf(x)) {

View File

@ -128,7 +128,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
if (yf != 0 and x < 0) { if (yf != 0 and x < 0) {
return math.nan(T); return math.nan(T);
} }
if (yi >= 1 << (T.bit_count - 1)) { if (yi >= 1 << (@typeInfo(T).Float.bits - 1)) {
return math.exp(y * math.ln(x)); return math.exp(y * math.ln(x));
} }
@ -150,7 +150,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
var xe = r2.exponent; var xe = r2.exponent;
var x1 = r2.significand; var x1 = r2.significand;
var i = @floatToInt(std.meta.Int(true, T.bit_count), yi); var i = @floatToInt(std.meta.Int(true, @typeInfo(T).Float.bits), yi);
while (i != 0) : (i >>= 1) { while (i != 0) : (i >>= 1) {
const overflow_shift = math.floatExponentBits(T) + 1; const overflow_shift = math.floatExponentBits(T) + 1;
if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) { if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) {

View File

@ -50,7 +50,7 @@ const pi4c = 2.69515142907905952645E-15;
const m4pi = 1.273239544735162542821171882678754627704620361328125; const m4pi = 1.273239544735162542821171882678754627704620361328125;
fn sin_(comptime T: type, x_: T) T { fn sin_(comptime T: type, x_: T) T {
const I = std.meta.Int(true, T.bit_count); const I = std.meta.Int(true, @typeInfo(T).Float.bits);
var x = x_; var x = x_;
if (x == 0 or math.isNan(x)) { if (x == 0 or math.isNan(x)) {

View File

@ -36,10 +36,10 @@ pub fn sqrt(x: anytype) Sqrt(@TypeOf(x)) {
} }
} }
fn sqrt_int(comptime T: type, value: T) std.meta.Int(false, T.bit_count / 2) { fn sqrt_int(comptime T: type, value: T) std.meta.Int(false, @typeInfo(T).Int.bits / 2) {
var op = value; var op = value;
var res: T = 0; var res: T = 0;
var one: T = 1 << (T.bit_count - 2); var one: T = 1 << (@typeInfo(T).Int.bits - 2);
// "one" starts at the highest power of four <= than the argument. // "one" starts at the highest power of four <= than the argument.
while (one > op) { while (one > op) {
@ -55,7 +55,7 @@ fn sqrt_int(comptime T: type, value: T) std.meta.Int(false, T.bit_count / 2) {
one >>= 2; one >>= 2;
} }
const ResultType = std.meta.Int(false, T.bit_count / 2); const ResultType = std.meta.Int(false, @typeInfo(T).Int.bits / 2);
return @intCast(ResultType, res); return @intCast(ResultType, res);
} }

View File

@ -43,7 +43,7 @@ const pi4c = 2.69515142907905952645E-15;
const m4pi = 1.273239544735162542821171882678754627704620361328125; const m4pi = 1.273239544735162542821171882678754627704620361328125;
fn tan_(comptime T: type, x_: T) T { fn tan_(comptime T: type, x_: T) T {
const I = std.meta.Int(true, T.bit_count); const I = std.meta.Int(true, @typeInfo(T).Float.bits);
var x = x_; var x = x_;
if (x == 0 or math.isNan(x)) { if (x == 0 or math.isNan(x)) {

View File

@ -949,7 +949,7 @@ pub fn readVarInt(comptime ReturnType: type, bytes: []const u8, endian: builtin.
/// This function cannot fail and cannot cause undefined behavior. /// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is native. This means the function can /// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory. /// simply pointer cast memory.
pub fn readIntNative(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8) T { pub fn readIntNative(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
return @ptrCast(*align(1) const T, bytes).*; return @ptrCast(*align(1) const T, bytes).*;
} }
@ -957,7 +957,7 @@ pub fn readIntNative(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]
/// The bit count of T must be evenly divisible by 8. /// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior. /// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is foreign, so it must byte-swap. /// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntForeign(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8) T { pub fn readIntForeign(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
return @byteSwap(T, readIntNative(T, bytes)); return @byteSwap(T, readIntNative(T, bytes));
} }
@ -971,18 +971,18 @@ pub const readIntBig = switch (builtin.endian) {
.Big => readIntNative, .Big => readIntNative,
}; };
/// Asserts that bytes.len >= T.bit_count / 8. Reads the integer starting from index 0 /// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes. /// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8. /// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is native. This means the function can /// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory. /// simply pointer cast memory.
pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T { pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T {
const n = @divExact(T.bit_count, 8); const n = @divExact(@typeInfo(T).Int.bits, 8);
assert(bytes.len >= n); assert(bytes.len >= n);
return readIntNative(T, bytes[0..n]); return readIntNative(T, bytes[0..n]);
} }
/// Asserts that bytes.len >= T.bit_count / 8. Reads the integer starting from index 0 /// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes. /// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8. /// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is foreign, so it must byte-swap. /// Assumes the endianness of memory is foreign, so it must byte-swap.
@ -1003,7 +1003,7 @@ pub const readIntSliceBig = switch (builtin.endian) {
/// Reads an integer from memory with bit count specified by T. /// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8. /// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior. /// This function cannot fail and cannot cause undefined behavior.
pub fn readInt(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8, endian: builtin.Endian) T { pub fn readInt(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8, endian: builtin.Endian) T {
if (endian == builtin.endian) { if (endian == builtin.endian) {
return readIntNative(T, bytes); return readIntNative(T, bytes);
} else { } else {
@ -1011,11 +1011,11 @@ pub fn readInt(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8, en
} }
} }
/// Asserts that bytes.len >= T.bit_count / 8. Reads the integer starting from index 0 /// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes. /// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8. /// The bit count of T must be evenly divisible by 8.
pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: builtin.Endian) T { pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: builtin.Endian) T {
const n = @divExact(T.bit_count, 8); const n = @divExact(@typeInfo(T).Int.bits, 8);
assert(bytes.len >= n); assert(bytes.len >= n);
return readInt(T, bytes[0..n], endian); return readInt(T, bytes[0..n], endian);
} }
@ -1060,7 +1060,7 @@ test "readIntBig and readIntLittle" {
/// accepts any integer bit width. /// accepts any integer bit width.
/// This function stores in native endian, which means it is implemented as a simple /// This function stores in native endian, which means it is implemented as a simple
/// memory store. /// memory store.
pub fn writeIntNative(comptime T: type, buf: *[(T.bit_count + 7) / 8]u8, value: T) void { pub fn writeIntNative(comptime T: type, buf: *[(@typeInfo(T).Int.bits + 7) / 8]u8, value: T) void {
@ptrCast(*align(1) T, buf).* = value; @ptrCast(*align(1) T, buf).* = value;
} }
@ -1068,7 +1068,7 @@ pub fn writeIntNative(comptime T: type, buf: *[(T.bit_count + 7) / 8]u8, value:
/// This function always succeeds, has defined behavior for all inputs, but /// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8. /// the integer bit width must be divisible by 8.
/// This function stores in foreign endian, which means it does a @byteSwap first. /// This function stores in foreign endian, which means it does a @byteSwap first.
pub fn writeIntForeign(comptime T: type, buf: *[@divExact(T.bit_count, 8)]u8, value: T) void { pub fn writeIntForeign(comptime T: type, buf: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T) void {
writeIntNative(T, buf, @byteSwap(T, value)); writeIntNative(T, buf, @byteSwap(T, value));
} }
@ -1085,7 +1085,7 @@ pub const writeIntBig = switch (builtin.endian) {
/// Writes an integer to memory, storing it in twos-complement. /// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but /// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8. /// the integer bit width must be divisible by 8.
pub fn writeInt(comptime T: type, buffer: *[@divExact(T.bit_count, 8)]u8, value: T, endian: builtin.Endian) void { pub fn writeInt(comptime T: type, buffer: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T, endian: builtin.Endian) void {
if (endian == builtin.endian) { if (endian == builtin.endian) {
return writeIntNative(T, buffer, value); return writeIntNative(T, buffer, value);
} else { } else {
@ -1094,19 +1094,19 @@ pub fn writeInt(comptime T: type, buffer: *[@divExact(T.bit_count, 8)]u8, value:
} }
/// Writes a twos-complement little-endian integer to memory. /// Writes a twos-complement little-endian integer to memory.
/// Asserts that buf.len >= T.bit_count / 8. /// Asserts that buf.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be divisible by 8. /// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer after writing the integer are set to zero. To /// Any extra bytes in buffer after writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntLittle /// avoid the branch to check for extra buffer bytes, use writeIntLittle
/// instead. /// instead.
pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void { pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
assert(buffer.len >= @divExact(T.bit_count, 8)); assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));
if (T.bit_count == 0) if (@typeInfo(T).Int.bits == 0)
return set(u8, buffer, 0); return set(u8, buffer, 0);
// TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough // TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough
const uint = std.meta.Int(false, T.bit_count); const uint = std.meta.Int(false, @typeInfo(T).Int.bits);
var bits = @truncate(uint, value); var bits = @truncate(uint, value);
for (buffer) |*b| { for (buffer) |*b| {
b.* = @truncate(u8, bits); b.* = @truncate(u8, bits);
@ -1115,18 +1115,18 @@ pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
} }
/// Writes a twos-complement big-endian integer to memory. /// Writes a twos-complement big-endian integer to memory.
/// Asserts that buffer.len >= T.bit_count / 8. /// Asserts that buffer.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be divisible by 8. /// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer before writing the integer are set to zero. To /// Any extra bytes in buffer before writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntBig instead. /// avoid the branch to check for extra buffer bytes, use writeIntBig instead.
pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void { pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void {
assert(buffer.len >= @divExact(T.bit_count, 8)); assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));
if (T.bit_count == 0) if (@typeInfo(T).Int.bits == 0)
return set(u8, buffer, 0); return set(u8, buffer, 0);
// TODO I want to call writeIntBig here but comptime eval facilities aren't good enough // TODO I want to call writeIntBig here but comptime eval facilities aren't good enough
const uint = std.meta.Int(false, T.bit_count); const uint = std.meta.Int(false, @typeInfo(T).Int.bits);
var bits = @truncate(uint, value); var bits = @truncate(uint, value);
var index: usize = buffer.len; var index: usize = buffer.len;
while (index != 0) { while (index != 0) {
@ -1147,13 +1147,13 @@ pub const writeIntSliceForeign = switch (builtin.endian) {
}; };
/// Writes a twos-complement integer to memory, with the specified endianness. /// Writes a twos-complement integer to memory, with the specified endianness.
/// Asserts that buf.len >= T.bit_count / 8. /// Asserts that buf.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be evenly divisible by 8. /// The bit count of T must be evenly divisible by 8.
/// Any extra bytes in buffer not part of the integer are set to zero, with /// Any extra bytes in buffer not part of the integer are set to zero, with
/// respect to endianness. To avoid the branch to check for extra buffer bytes, /// respect to endianness. To avoid the branch to check for extra buffer bytes,
/// use writeInt instead. /// use writeInt instead.
pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: builtin.Endian) void { pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: builtin.Endian) void {
comptime assert(T.bit_count % 8 == 0); comptime assert(@typeInfo(T).Int.bits % 8 == 0);
return switch (endian) { return switch (endian) {
.Little => writeIntSliceLittle(T, buffer, value), .Little => writeIntSliceLittle(T, buffer, value),
.Big => writeIntSliceBig(T, buffer, value), .Big => writeIntSliceBig(T, buffer, value),

View File

@ -167,11 +167,11 @@ pub fn create(self: *Allocator, comptime T: type) Error!*T {
/// `ptr` should be the return value of `create`, or otherwise /// `ptr` should be the return value of `create`, or otherwise
/// have the same address and alignment property. /// have the same address and alignment property.
pub fn destroy(self: *Allocator, ptr: anytype) void { pub fn destroy(self: *Allocator, ptr: anytype) void {
const T = @TypeOf(ptr).Child; const info = @typeInfo(@TypeOf(ptr)).Pointer;
const T = info.child;
if (@sizeOf(T) == 0) return; if (@sizeOf(T) == 0) return;
const non_const_ptr = @intToPtr([*]u8, @ptrToInt(ptr)); const non_const_ptr = @intToPtr([*]u8, @ptrToInt(ptr));
const ptr_align = @typeInfo(@TypeOf(ptr)).Pointer.alignment; _ = self.shrinkBytes(non_const_ptr[0..@sizeOf(T)], info.alignment, 0, 0, @returnAddress());
_ = self.shrinkBytes(non_const_ptr[0..@sizeOf(T)], ptr_align, 0, 0, @returnAddress());
} }
/// Allocates an array of `n` items of type `T` and sets all the /// Allocates an array of `n` items of type `T` and sets all the

View File

@ -4504,7 +4504,7 @@ pub fn res_mkquery(
// Make a reasonably unpredictable id // Make a reasonably unpredictable id
var ts: timespec = undefined; var ts: timespec = undefined;
clock_gettime(CLOCK_REALTIME, &ts) catch {}; clock_gettime(CLOCK_REALTIME, &ts) catch {};
const UInt = std.meta.Int(false, @TypeOf(ts.tv_nsec).bit_count); const UInt = std.meta.Int(false, std.meta.bitCount(@TypeOf(ts.tv_nsec)));
const unsec = @bitCast(UInt, ts.tv_nsec); const unsec = @bitCast(UInt, ts.tv_nsec);
const id = @truncate(u32, unsec + unsec / 65536); const id = @truncate(u32, unsec + unsec / 65536);
q[0] = @truncate(u8, id / 256); q[0] = @truncate(u8, id / 256);

View File

@ -846,7 +846,7 @@ pub const SIG_ERR = @intToPtr(?Sigaction.sigaction_fn, maxInt(usize));
pub const SIG_DFL = @intToPtr(?Sigaction.sigaction_fn, 0); pub const SIG_DFL = @intToPtr(?Sigaction.sigaction_fn, 0);
pub const SIG_IGN = @intToPtr(?Sigaction.sigaction_fn, 1); pub const SIG_IGN = @intToPtr(?Sigaction.sigaction_fn, 1);
pub const empty_sigset = [_]u32{0} ** sigset_t.len; pub const empty_sigset = [_]u32{0} ** @typeInfo(sigset_t).Array.len;
pub const signalfd_siginfo = extern struct { pub const signalfd_siginfo = extern struct {
signo: u32, signo: u32,

View File

@ -815,17 +815,19 @@ pub fn sigaction(sig: u6, noalias act: *const Sigaction, noalias oact: ?*Sigacti
return 0; return 0;
} }
const usize_bits = @typeInfo(usize).Int.bits;
pub fn sigaddset(set: *sigset_t, sig: u6) void { pub fn sigaddset(set: *sigset_t, sig: u6) void {
const s = sig - 1; const s = sig - 1;
// shift in musl: s&8*sizeof *set->__bits-1 // shift in musl: s&8*sizeof *set->__bits-1
const shift = @intCast(u5, s & (usize.bit_count - 1)); const shift = @intCast(u5, s & (usize_bits - 1));
const val = @intCast(u32, 1) << shift; const val = @intCast(u32, 1) << shift;
(set.*)[@intCast(usize, s) / usize.bit_count] |= val; (set.*)[@intCast(usize, s) / usize_bits] |= val;
} }
pub fn sigismember(set: *const sigset_t, sig: u6) bool { pub fn sigismember(set: *const sigset_t, sig: u6) bool {
const s = sig - 1; const s = sig - 1;
return ((set.*)[@intCast(usize, s) / usize.bit_count] & (@intCast(usize, 1) << (s & (usize.bit_count - 1)))) != 0; return ((set.*)[@intCast(usize, s) / usize_bits] & (@intCast(usize, 1) << (s & (usize_bits - 1)))) != 0;
} }
pub fn getsockname(fd: i32, noalias addr: *sockaddr, noalias len: *socklen_t) usize { pub fn getsockname(fd: i32, noalias addr: *sockaddr, noalias len: *socklen_t) usize {

View File

@ -12,7 +12,7 @@ pub const SOCKET_ERROR = -1;
pub const WSADESCRIPTION_LEN = 256; pub const WSADESCRIPTION_LEN = 256;
pub const WSASYS_STATUS_LEN = 128; pub const WSASYS_STATUS_LEN = 128;
pub const WSADATA = if (usize.bit_count == u64.bit_count) pub const WSADATA = if (@sizeOf(usize) == @sizeOf(u64))
extern struct { extern struct {
wVersion: WORD, wVersion: WORD,
wHighVersion: WORD, wHighVersion: WORD,

View File

@ -51,8 +51,9 @@ pub const Random = struct {
/// Returns a random int `i` such that `0 <= i <= maxInt(T)`. /// Returns a random int `i` such that `0 <= i <= maxInt(T)`.
/// `i` is evenly distributed. /// `i` is evenly distributed.
pub fn int(r: *Random, comptime T: type) T { pub fn int(r: *Random, comptime T: type) T {
const UnsignedT = std.meta.Int(false, T.bit_count); const bits = @typeInfo(T).Int.bits;
const ByteAlignedT = std.meta.Int(false, @divTrunc(T.bit_count + 7, 8) * 8); const UnsignedT = std.meta.Int(false, bits);
const ByteAlignedT = std.meta.Int(false, @divTrunc(bits + 7, 8) * 8);
var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined; var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
r.bytes(rand_bytes[0..]); r.bytes(rand_bytes[0..]);
@ -68,10 +69,11 @@ pub const Random = struct {
/// Constant-time implementation off `uintLessThan`. /// Constant-time implementation off `uintLessThan`.
/// The results of this function may be biased. /// The results of this function may be biased.
pub fn uintLessThanBiased(r: *Random, comptime T: type, less_than: T) T { pub fn uintLessThanBiased(r: *Random, comptime T: type, less_than: T) T {
comptime assert(T.is_signed == false); comptime assert(@typeInfo(T).Int.is_signed == false);
comptime assert(T.bit_count <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation! const bits = @typeInfo(T).Int.bits;
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
assert(0 < less_than); assert(0 < less_than);
if (T.bit_count <= 32) { if (bits <= 32) {
return @intCast(T, limitRangeBiased(u32, r.int(u32), less_than)); return @intCast(T, limitRangeBiased(u32, r.int(u32), less_than));
} else { } else {
return @intCast(T, limitRangeBiased(u64, r.int(u64), less_than)); return @intCast(T, limitRangeBiased(u64, r.int(u64), less_than));
@ -87,13 +89,15 @@ pub const Random = struct {
/// this function is guaranteed to return. /// this function is guaranteed to return.
/// If you need deterministic runtime bounds, use `uintLessThanBiased`. /// If you need deterministic runtime bounds, use `uintLessThanBiased`.
pub fn uintLessThan(r: *Random, comptime T: type, less_than: T) T { pub fn uintLessThan(r: *Random, comptime T: type, less_than: T) T {
comptime assert(T.is_signed == false); comptime assert(@typeInfo(T).Int.is_signed == false);
comptime assert(T.bit_count <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation! const bits = @typeInfo(T).Int.bits;
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
assert(0 < less_than); assert(0 < less_than);
// Small is typically u32 // Small is typically u32
const Small = std.meta.Int(false, @divTrunc(T.bit_count + 31, 32) * 32); const small_bits = @divTrunc(bits + 31, 32) * 32;
const Small = std.meta.Int(false, small_bits);
// Large is typically u64 // Large is typically u64
const Large = std.meta.Int(false, Small.bit_count * 2); const Large = std.meta.Int(false, small_bits * 2);
// adapted from: // adapted from:
// http://www.pcg-random.org/posts/bounded-rands.html // http://www.pcg-random.org/posts/bounded-rands.html
@ -105,7 +109,7 @@ pub const Random = struct {
// TODO: workaround for https://github.com/ziglang/zig/issues/1770 // TODO: workaround for https://github.com/ziglang/zig/issues/1770
// should be: // should be:
// var t: Small = -%less_than; // var t: Small = -%less_than;
var t: Small = @bitCast(Small, -%@bitCast(std.meta.Int(true, Small.bit_count), @as(Small, less_than))); var t: Small = @bitCast(Small, -%@bitCast(std.meta.Int(true, small_bits), @as(Small, less_than)));
if (t >= less_than) { if (t >= less_than) {
t -= less_than; t -= less_than;
@ -119,13 +123,13 @@ pub const Random = struct {
l = @truncate(Small, m); l = @truncate(Small, m);
} }
} }
return @intCast(T, m >> Small.bit_count); return @intCast(T, m >> small_bits);
} }
/// Constant-time implementation off `uintAtMost`. /// Constant-time implementation off `uintAtMost`.
/// The results of this function may be biased. /// The results of this function may be biased.
pub fn uintAtMostBiased(r: *Random, comptime T: type, at_most: T) T { pub fn uintAtMostBiased(r: *Random, comptime T: type, at_most: T) T {
assert(T.is_signed == false); assert(@typeInfo(T).Int.is_signed == false);
if (at_most == maxInt(T)) { if (at_most == maxInt(T)) {
// have the full range // have the full range
return r.int(T); return r.int(T);
@ -137,7 +141,7 @@ pub const Random = struct {
/// See `uintLessThan`, which this function uses in most cases, /// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function. /// for commentary on the runtime of this function.
pub fn uintAtMost(r: *Random, comptime T: type, at_most: T) T { pub fn uintAtMost(r: *Random, comptime T: type, at_most: T) T {
assert(T.is_signed == false); assert(@typeInfo(T).Int.is_signed == false);
if (at_most == maxInt(T)) { if (at_most == maxInt(T)) {
// have the full range // have the full range
return r.int(T); return r.int(T);
@ -149,9 +153,10 @@ pub const Random = struct {
/// The results of this function may be biased. /// The results of this function may be biased.
pub fn intRangeLessThanBiased(r: *Random, comptime T: type, at_least: T, less_than: T) T { pub fn intRangeLessThanBiased(r: *Random, comptime T: type, at_least: T, less_than: T) T {
assert(at_least < less_than); assert(at_least < less_than);
if (T.is_signed) { const info = @typeInfo(T).Int;
if (info.is_signed) {
// Two's complement makes this math pretty easy. // Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(false, T.bit_count); const UnsignedT = std.meta.Int(false, info.bits);
const lo = @bitCast(UnsignedT, at_least); const lo = @bitCast(UnsignedT, at_least);
const hi = @bitCast(UnsignedT, less_than); const hi = @bitCast(UnsignedT, less_than);
const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo); const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
@ -167,9 +172,10 @@ pub const Random = struct {
/// for commentary on the runtime of this function. /// for commentary on the runtime of this function.
pub fn intRangeLessThan(r: *Random, comptime T: type, at_least: T, less_than: T) T { pub fn intRangeLessThan(r: *Random, comptime T: type, at_least: T, less_than: T) T {
assert(at_least < less_than); assert(at_least < less_than);
if (T.is_signed) { const info = @typeInfo(T).Int;
if (info.is_signed) {
// Two's complement makes this math pretty easy. // Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(false, T.bit_count); const UnsignedT = std.meta.Int(false, info.bits);
const lo = @bitCast(UnsignedT, at_least); const lo = @bitCast(UnsignedT, at_least);
const hi = @bitCast(UnsignedT, less_than); const hi = @bitCast(UnsignedT, less_than);
const result = lo +% r.uintLessThan(UnsignedT, hi -% lo); const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
@ -184,9 +190,10 @@ pub const Random = struct {
/// The results of this function may be biased. /// The results of this function may be biased.
pub fn intRangeAtMostBiased(r: *Random, comptime T: type, at_least: T, at_most: T) T { pub fn intRangeAtMostBiased(r: *Random, comptime T: type, at_least: T, at_most: T) T {
assert(at_least <= at_most); assert(at_least <= at_most);
if (T.is_signed) { const info = @typeInfo(T).Int;
if (info.is_signed) {
// Two's complement makes this math pretty easy. // Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(false, T.bit_count); const UnsignedT = std.meta.Int(false, info.bits);
const lo = @bitCast(UnsignedT, at_least); const lo = @bitCast(UnsignedT, at_least);
const hi = @bitCast(UnsignedT, at_most); const hi = @bitCast(UnsignedT, at_most);
const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo); const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
@ -202,9 +209,10 @@ pub const Random = struct {
/// for commentary on the runtime of this function. /// for commentary on the runtime of this function.
pub fn intRangeAtMost(r: *Random, comptime T: type, at_least: T, at_most: T) T { pub fn intRangeAtMost(r: *Random, comptime T: type, at_least: T, at_most: T) T {
assert(at_least <= at_most); assert(at_least <= at_most);
if (T.is_signed) { const info = @typeInfo(T).Int;
if (info.is_signed) {
// Two's complement makes this math pretty easy. // Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(false, T.bit_count); const UnsignedT = std.meta.Int(false, info.bits);
const lo = @bitCast(UnsignedT, at_least); const lo = @bitCast(UnsignedT, at_least);
const hi = @bitCast(UnsignedT, at_most); const hi = @bitCast(UnsignedT, at_most);
const result = lo +% r.uintAtMost(UnsignedT, hi -% lo); const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
@ -280,14 +288,15 @@ pub const Random = struct {
/// into an integer 0 <= result < less_than. /// into an integer 0 <= result < less_than.
/// This function introduces a minor bias. /// This function introduces a minor bias.
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T { pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
comptime assert(T.is_signed == false); comptime assert(@typeInfo(T).Int.is_signed == false);
const T2 = std.meta.Int(false, T.bit_count * 2); const bits = @typeInfo(T).Int.bits;
const T2 = std.meta.Int(false, bits * 2);
// adapted from: // adapted from:
// http://www.pcg-random.org/posts/bounded-rands.html // http://www.pcg-random.org/posts/bounded-rands.html
// "Integer Multiplication (Biased)" // "Integer Multiplication (Biased)"
var m: T2 = @as(T2, random_int) * @as(T2, less_than); var m: T2 = @as(T2, random_int) * @as(T2, less_than);
return @intCast(T, m >> T.bit_count); return @intCast(T, m >> bits);
} }
const SequentialPrng = struct { const SequentialPrng = struct {

View File

@ -133,7 +133,7 @@ pub fn main() !void {
} }
fn runBuild(builder: *Builder) anyerror!void { fn runBuild(builder: *Builder) anyerror!void {
switch (@typeInfo(@TypeOf(root.build).ReturnType)) { switch (@typeInfo(@typeInfo(@TypeOf(root.build)).Fn.return_type.?)) {
.Void => root.build(builder), .Void => root.build(builder),
.ErrorUnion => try root.build(builder), .ErrorUnion => try root.build(builder),
else => @compileError("expected return type of build to be 'void' or '!void'"), else => @compileError("expected return type of build to be 'void' or '!void'"),

View File

@ -516,11 +516,12 @@ export fn roundf(a: f32) f32 {
fn generic_fmod(comptime T: type, x: T, y: T) T { fn generic_fmod(comptime T: type, x: T, y: T) T {
@setRuntimeSafety(false); @setRuntimeSafety(false);
const uint = std.meta.Int(false, T.bit_count); const bits = @typeInfo(T).Float.bits;
const uint = std.meta.Int(false, bits);
const log2uint = math.Log2Int(uint); const log2uint = math.Log2Int(uint);
const digits = if (T == f32) 23 else 52; const digits = if (T == f32) 23 else 52;
const exp_bits = if (T == f32) 9 else 12; const exp_bits = if (T == f32) 9 else 12;
const bits_minus_1 = T.bit_count - 1; const bits_minus_1 = bits - 1;
const mask = if (T == f32) 0xff else 0x7ff; const mask = if (T == f32) 0xff else 0x7ff;
var ux = @bitCast(uint, x); var ux = @bitCast(uint, x);
var uy = @bitCast(uint, y); var uy = @bitCast(uint, y);

View File

@ -59,23 +59,25 @@ pub fn __aeabi_dsub(a: f64, b: f64) callconv(.AAPCS) f64 {
} }
// TODO: restore inline keyword, see: https://github.com/ziglang/zig/issues/2154 // TODO: restore inline keyword, see: https://github.com/ziglang/zig/issues/2154
fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 { fn normalize(comptime T: type, significand: *std.meta.Int(false, @typeInfo(T).Float.bits)) i32 {
const Z = std.meta.Int(false, T.bit_count); const bits = @typeInfo(T).Float.bits;
const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1)); const Z = std.meta.Int(false, bits);
const S = std.meta.Int(false, bits - @clz(Z, @as(Z, bits) - 1));
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const implicitBit = @as(Z, 1) << significandBits; const implicitBit = @as(Z, 1) << significandBits;
const shift = @clz(std.meta.Int(false, T.bit_count), significand.*) - @clz(Z, implicitBit); const shift = @clz(std.meta.Int(false, bits), significand.*) - @clz(Z, implicitBit);
significand.* <<= @intCast(S, shift); significand.* <<= @intCast(S, shift);
return 1 - shift; return 1 - shift;
} }
// TODO: restore inline keyword, see: https://github.com/ziglang/zig/issues/2154 // TODO: restore inline keyword, see: https://github.com/ziglang/zig/issues/2154
fn addXf3(comptime T: type, a: T, b: T) T { fn addXf3(comptime T: type, a: T, b: T) T {
const Z = std.meta.Int(false, T.bit_count); const bits = @typeInfo(T).Float.bits;
const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1)); const Z = std.meta.Int(false, bits);
const S = std.meta.Int(false, bits - @clz(Z, @as(Z, bits) - 1));
const typeWidth = T.bit_count; const typeWidth = bits;
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T); const exponentBits = std.math.floatExponentBits(T);
@ -187,7 +189,7 @@ fn addXf3(comptime T: type, a: T, b: T) T {
// If partial cancellation occured, we need to left-shift the result // If partial cancellation occured, we need to left-shift the result
// and adjust the exponent: // and adjust the exponent:
if (aSignificand < implicitBit << 3) { if (aSignificand < implicitBit << 3) {
const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.Int(false, T.bit_count), implicitBit << 3)); const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.Int(false, bits), implicitBit << 3));
aSignificand <<= @intCast(S, shift); aSignificand <<= @intCast(S, shift);
aExponent -= shift; aExponent -= shift;
} }

View File

@ -7,8 +7,8 @@ const builtin = @import("builtin");
pub fn _alldiv(a: i64, b: i64) callconv(.Stdcall) i64 { pub fn _alldiv(a: i64, b: i64) callconv(.Stdcall) i64 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const s_a = a >> (i64.bit_count - 1); const s_a = a >> (64 - 1);
const s_b = b >> (i64.bit_count - 1); const s_b = b >> (64 - 1);
const an = (a ^ s_a) -% s_a; const an = (a ^ s_a) -% s_a;
const bn = (b ^ s_b) -% s_b; const bn = (b ^ s_b) -% s_b;

View File

@ -7,8 +7,8 @@ const builtin = @import("builtin");
pub fn _allrem(a: i64, b: i64) callconv(.Stdcall) i64 { pub fn _allrem(a: i64, b: i64) callconv(.Stdcall) i64 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const s_a = a >> (i64.bit_count - 1); const s_a = a >> (64 - 1);
const s_b = b >> (i64.bit_count - 1); const s_b = b >> (64 - 1);
const an = (a ^ s_a) -% s_a; const an = (a ^ s_a) -% s_a;
const bn = (b ^ s_b) -% s_b; const bn = (b ^ s_b) -% s_b;

View File

@ -27,8 +27,9 @@ const GE = extern enum(i32) {
pub fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT { pub fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const srep_t = std.meta.Int(true, T.bit_count); const bits = @typeInfo(T).Float.bits;
const rep_t = std.meta.Int(false, T.bit_count); const srep_t = std.meta.Int(true, bits);
const rep_t = std.meta.Int(false, bits);
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T); const exponentBits = std.math.floatExponentBits(T);
@ -73,7 +74,7 @@ pub fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT {
pub fn unordcmp(comptime T: type, a: T, b: T) i32 { pub fn unordcmp(comptime T: type, a: T, b: T) i32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const rep_t = std.meta.Int(false, T.bit_count); const rep_t = std.meta.Int(false, @typeInfo(T).Float.bits);
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T); const exponentBits = std.math.floatExponentBits(T);

View File

@ -12,10 +12,9 @@ const builtin = @import("builtin");
pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 { pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, f64.bit_count); const Z = std.meta.Int(false, 64);
const SignedZ = std.meta.Int(true, f64.bit_count); const SignedZ = std.meta.Int(true, 64);
const typeWidth = f64.bit_count;
const significandBits = std.math.floatMantissaBits(f64); const significandBits = std.math.floatMantissaBits(f64);
const exponentBits = std.math.floatExponentBits(f64); const exponentBits = std.math.floatExponentBits(f64);
@ -317,9 +316,9 @@ pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
} }
} }
pub fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 { pub fn normalize(comptime T: type, significand: *std.meta.Int(false, @typeInfo(T).Float.bits)) i32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, T.bit_count); const Z = std.meta.Int(false, @typeInfo(T).Float.bits);
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const implicitBit = @as(Z, 1) << significandBits; const implicitBit = @as(Z, 1) << significandBits;

View File

@ -12,9 +12,8 @@ const builtin = @import("builtin");
pub fn __divsf3(a: f32, b: f32) callconv(.C) f32 { pub fn __divsf3(a: f32, b: f32) callconv(.C) f32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, f32.bit_count); const Z = std.meta.Int(false, 32);
const typeWidth = f32.bit_count;
const significandBits = std.math.floatMantissaBits(f32); const significandBits = std.math.floatMantissaBits(f32);
const exponentBits = std.math.floatExponentBits(f32); const exponentBits = std.math.floatExponentBits(f32);
@ -190,9 +189,9 @@ pub fn __divsf3(a: f32, b: f32) callconv(.C) f32 {
} }
} }
fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 { fn normalize(comptime T: type, significand: *std.meta.Int(false, @typeInfo(T).Float.bits)) i32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, T.bit_count); const Z = std.meta.Int(false, @typeInfo(T).Float.bits);
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const implicitBit = @as(Z, 1) << significandBits; const implicitBit = @as(Z, 1) << significandBits;

View File

@ -11,10 +11,9 @@ const wideMultiply = @import("divdf3.zig").wideMultiply;
pub fn __divtf3(a: f128, b: f128) callconv(.C) f128 { pub fn __divtf3(a: f128, b: f128) callconv(.C) f128 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, f128.bit_count); const Z = std.meta.Int(false, 128);
const SignedZ = std.meta.Int(true, f128.bit_count); const SignedZ = std.meta.Int(true, 128);
const typeWidth = f128.bit_count;
const significandBits = std.math.floatMantissaBits(f128); const significandBits = std.math.floatMantissaBits(f128);
const exponentBits = std.math.floatExponentBits(f128); const exponentBits = std.math.floatExponentBits(f128);

View File

@ -9,8 +9,8 @@ const builtin = @import("builtin");
pub fn __divti3(a: i128, b: i128) callconv(.C) i128 { pub fn __divti3(a: i128, b: i128) callconv(.C) i128 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const s_a = a >> (i128.bit_count - 1); const s_a = a >> (128 - 1);
const s_b = b >> (i128.bit_count - 1); const s_b = b >> (128 - 1);
const an = (a ^ s_a) -% s_a; const an = (a ^ s_a) -% s_a;
const bn = (b ^ s_b) -% s_b; const bn = (b ^ s_b) -% s_b;

View File

@ -28,7 +28,7 @@ pub fn fixint(comptime fp_t: type, comptime fixint_t: type, a: fp_t) fixint_t {
else => unreachable, else => unreachable,
}; };
const typeWidth = rep_t.bit_count; const typeWidth = @typeInfo(rep_t).Int.bits;
const exponentBits = (typeWidth - significandBits - 1); const exponentBits = (typeWidth - significandBits - 1);
const signBit = (@as(rep_t, 1) << (significandBits + exponentBits)); const signBit = (@as(rep_t, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1); const maxExponent = ((1 << exponentBits) - 1);
@ -50,12 +50,13 @@ pub fn fixint(comptime fp_t: type, comptime fixint_t: type, a: fp_t) fixint_t {
if (exponent < 0) return 0; if (exponent < 0) return 0;
// The unsigned result needs to be large enough to handle an fixint_t or rep_t // The unsigned result needs to be large enough to handle an fixint_t or rep_t
const fixuint_t = std.meta.Int(false, fixint_t.bit_count); const fixint_bits = @typeInfo(fixint_t).Int.bits;
const UintResultType = if (fixint_t.bit_count > rep_t.bit_count) fixuint_t else rep_t; const fixuint_t = std.meta.Int(false, fixint_bits);
const UintResultType = if (fixint_bits > typeWidth) fixuint_t else rep_t;
var uint_result: UintResultType = undefined; var uint_result: UintResultType = undefined;
// If the value is too large for the integer type, saturate. // If the value is too large for the integer type, saturate.
if (@intCast(usize, exponent) >= fixint_t.bit_count) { if (@intCast(usize, exponent) >= fixint_bits) {
return if (negative) @as(fixint_t, minInt(fixint_t)) else @as(fixint_t, maxInt(fixint_t)); return if (negative) @as(fixint_t, minInt(fixint_t)) else @as(fixint_t, maxInt(fixint_t));
} }

View File

@ -15,14 +15,14 @@ pub fn fixuint(comptime fp_t: type, comptime fixuint_t: type, a: fp_t) fixuint_t
f128 => u128, f128 => u128,
else => unreachable, else => unreachable,
}; };
const srep_t = @import("std").meta.Int(true, rep_t.bit_count); const typeWidth = @typeInfo(rep_t).Int.bits;
const srep_t = @import("std").meta.Int(true, typeWidth);
const significandBits = switch (fp_t) { const significandBits = switch (fp_t) {
f32 => 23, f32 => 23,
f64 => 52, f64 => 52,
f128 => 112, f128 => 112,
else => unreachable, else => unreachable,
}; };
const typeWidth = rep_t.bit_count;
const exponentBits = (typeWidth - significandBits - 1); const exponentBits = (typeWidth - significandBits - 1);
const signBit = (@as(rep_t, 1) << (significandBits + exponentBits)); const signBit = (@as(rep_t, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1); const maxExponent = ((1 << exponentBits) - 1);
@ -44,7 +44,7 @@ pub fn fixuint(comptime fp_t: type, comptime fixuint_t: type, a: fp_t) fixuint_t
if (sign == -1 or exponent < 0) return 0; if (sign == -1 or exponent < 0) return 0;
// If the value is too large for the integer type, saturate. // If the value is too large for the integer type, saturate.
if (@intCast(c_uint, exponent) >= fixuint_t.bit_count) return ~@as(fixuint_t, 0); if (@intCast(c_uint, exponent) >= @typeInfo(fixuint_t).Int.bits) return ~@as(fixuint_t, 0);
// If 0 <= exponent < significandBits, right shift to get the result. // If 0 <= exponent < significandBits, right shift to get the result.
// Otherwise, shift left. // Otherwise, shift left.

View File

@ -12,15 +12,16 @@ const FLT_MANT_DIG = 24;
fn __floatXisf(comptime T: type, arg: T) f32 { fn __floatXisf(comptime T: type, arg: T) f32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, T.bit_count); const bits = @typeInfo(T).Int.bits;
const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1)); const Z = std.meta.Int(false, bits);
const S = std.meta.Int(false, bits - @clz(Z, @as(Z, bits) - 1));
if (arg == 0) { if (arg == 0) {
return @as(f32, 0.0); return @as(f32, 0.0);
} }
var ai = arg; var ai = arg;
const N: u32 = T.bit_count; const N: u32 = bits;
const si = ai >> @intCast(S, (N - 1)); const si = ai >> @intCast(S, (N - 1));
ai = ((ai ^ si) -% si); ai = ((ai ^ si) -% si);
var a = @bitCast(Z, ai); var a = @bitCast(Z, ai);
@ -66,7 +67,7 @@ fn __floatXisf(comptime T: type, arg: T) f32 {
// a is now rounded to FLT_MANT_DIG bits // a is now rounded to FLT_MANT_DIG bits
} }
const s = @bitCast(Z, arg) >> (T.bit_count - 32); const s = @bitCast(Z, arg) >> (@typeInfo(T).Int.bits - 32);
const r = (@intCast(u32, s) & 0x80000000) | // sign const r = (@intCast(u32, s) & 0x80000000) | // sign
(@intCast(u32, (e + 127)) << 23) | // exponent (@intCast(u32, (e + 127)) << 23) | // exponent
(@truncate(u32, a) & 0x007fffff); // mantissa-high (@truncate(u32, a) & 0x007fffff); // mantissa-high

View File

@ -10,8 +10,9 @@ const maxInt = std.math.maxInt;
fn floatsiXf(comptime T: type, a: i32) T { fn floatsiXf(comptime T: type, a: i32) T {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, T.bit_count); const bits = @typeInfo(T).Float.bits;
const S = std.meta.Int(false, T.bit_count - @clz(Z, @as(Z, T.bit_count) - 1)); const Z = std.meta.Int(false, bits);
const S = std.meta.Int(false, bits - @clz(Z, @as(Z, bits) - 1));
if (a == 0) { if (a == 0) {
return @as(T, 0.0); return @as(T, 0.0);
@ -22,7 +23,7 @@ fn floatsiXf(comptime T: type, a: i32) T {
const exponentBias = ((1 << exponentBits - 1) - 1); const exponentBias = ((1 << exponentBits - 1) - 1);
const implicitBit = @as(Z, 1) << significandBits; const implicitBit = @as(Z, 1) << significandBits;
const signBit = @as(Z, 1 << Z.bit_count - 1); const signBit = @as(Z, 1 << bits - 1);
const sign = a >> 31; const sign = a >> 31;
// Take absolute value of a via abs(x) = (x^(x >> 31)) - (x >> 31). // Take absolute value of a via abs(x) = (x^(x >> 31)) - (x >> 31).

View File

@ -15,7 +15,7 @@ pub fn __floatundisf(arg: u64) callconv(.C) f32 {
if (arg == 0) return 0; if (arg == 0) return 0;
var a = arg; var a = arg;
const N: usize = @TypeOf(a).bit_count; const N: usize = @typeInfo(@TypeOf(a)).Int.bits;
// Number of significant digits // Number of significant digits
const sd = N - @clz(u64, a); const sd = N - @clz(u64, a);
// 8 exponent // 8 exponent

View File

@ -19,7 +19,7 @@ pub fn __floatunditf(a: u64) callconv(.C) f128 {
const exponent_bias = (1 << (exponent_bits - 1)) - 1; const exponent_bias = (1 << (exponent_bits - 1)) - 1;
const implicit_bit = 1 << mantissa_bits; const implicit_bit = 1 << mantissa_bits;
const exp: u128 = (u64.bit_count - 1) - @clz(u64, a); const exp: u128 = (64 - 1) - @clz(u64, a);
const shift: u7 = mantissa_bits - @intCast(u7, exp); const shift: u7 = mantissa_bits - @intCast(u7, exp);
var result: u128 = (@intCast(u128, a) << shift) ^ implicit_bit; var result: u128 = (@intCast(u128, a) << shift) ^ implicit_bit;

View File

@ -19,7 +19,7 @@ pub fn __floatunsitf(a: u64) callconv(.C) f128 {
const exponent_bias = (1 << (exponent_bits - 1)) - 1; const exponent_bias = (1 << (exponent_bits - 1)) - 1;
const implicit_bit = 1 << mantissa_bits; const implicit_bit = 1 << mantissa_bits;
const exp = (u64.bit_count - 1) - @clz(u64, a); const exp = (64 - 1) - @clz(u64, a);
const shift = mantissa_bits - @intCast(u7, exp); const shift = mantissa_bits - @intCast(u7, exp);
// TODO(#1148): @bitCast alignment error // TODO(#1148): @bitCast alignment error

View File

@ -219,7 +219,7 @@ fn test_one_divsi3(a: i32, b: i32, expected_q: i32) void {
pub fn __udivsi3(n: u32, d: u32) callconv(.C) u32 { pub fn __udivsi3(n: u32, d: u32) callconv(.C) u32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const n_uword_bits: c_uint = u32.bit_count; const n_uword_bits: c_uint = 32;
// special cases // special cases
if (d == 0) return 0; // ?! if (d == 0) return 0; // ?!
if (n == 0) return 0; if (n == 0) return 0;

View File

@ -14,8 +14,8 @@ const compiler_rt = @import("../compiler_rt.zig");
pub fn __modti3(a: i128, b: i128) callconv(.C) i128 { pub fn __modti3(a: i128, b: i128) callconv(.C) i128 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const s_a = a >> (i128.bit_count - 1); // s = a < 0 ? -1 : 0 const s_a = a >> (128 - 1); // s = a < 0 ? -1 : 0
const s_b = b >> (i128.bit_count - 1); // s = b < 0 ? -1 : 0 const s_b = b >> (128 - 1); // s = b < 0 ? -1 : 0
const an = (a ^ s_a) -% s_a; // negate if s == -1 const an = (a ^ s_a) -% s_a; // negate if s == -1
const bn = (b ^ s_b) -% s_b; // negate if s == -1 const bn = (b ^ s_b) -% s_b; // negate if s == -1

View File

@ -33,9 +33,9 @@ pub fn __aeabi_dmul(a: f64, b: f64) callconv(.C) f64 {
fn mulXf3(comptime T: type, a: T, b: T) T { fn mulXf3(comptime T: type, a: T, b: T) T {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, T.bit_count); const typeWidth = @typeInfo(T).Float.bits;
const Z = std.meta.Int(false, typeWidth);
const typeWidth = T.bit_count;
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T); const exponentBits = std.math.floatExponentBits(T);
@ -269,9 +269,9 @@ fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
} }
} }
fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i32 { fn normalize(comptime T: type, significand: *std.meta.Int(false, @typeInfo(T).Float.bits)) i32 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const Z = std.meta.Int(false, T.bit_count); const Z = std.meta.Int(false, @typeInfo(T).Float.bits);
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const implicitBit = @as(Z, 1) << significandBits; const implicitBit = @as(Z, 1) << significandBits;
@ -282,7 +282,7 @@ fn normalize(comptime T: type, significand: *std.meta.Int(false, T.bit_count)) i
fn wideRightShiftWithSticky(comptime Z: type, hi: *Z, lo: *Z, count: u32) void { fn wideRightShiftWithSticky(comptime Z: type, hi: *Z, lo: *Z, count: u32) void {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const typeWidth = Z.bit_count; const typeWidth = @typeInfo(Z).Int.bits;
const S = std.math.Log2Int(Z); const S = std.math.Log2Int(Z);
if (count < typeWidth) { if (count < typeWidth) {
const sticky = @truncate(u8, lo.* << @intCast(S, typeWidth -% count)); const sticky = @truncate(u8, lo.* << @intCast(S, typeWidth -% count));

View File

@ -11,7 +11,7 @@ const minInt = std.math.minInt;
pub fn __mulodi4(a: i64, b: i64, overflow: *c_int) callconv(.C) i64 { pub fn __mulodi4(a: i64, b: i64, overflow: *c_int) callconv(.C) i64 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const min = @bitCast(i64, @as(u64, 1 << (i64.bit_count - 1))); const min = @bitCast(i64, @as(u64, 1 << (64 - 1)));
const max = ~min; const max = ~min;
overflow.* = 0; overflow.* = 0;

View File

@ -9,7 +9,7 @@ const compiler_rt = @import("../compiler_rt.zig");
pub fn __muloti4(a: i128, b: i128, overflow: *c_int) callconv(.C) i128 { pub fn __muloti4(a: i128, b: i128, overflow: *c_int) callconv(.C) i128 {
@setRuntimeSafety(builtin.is_test); @setRuntimeSafety(builtin.is_test);
const min = @bitCast(i128, @as(u128, 1 << (i128.bit_count - 1))); const min = @bitCast(i128, @as(u128, 1 << (128 - 1)));
const max = ~min; const max = ~min;
overflow.* = 0; overflow.* = 0;
@ -27,9 +27,9 @@ pub fn __muloti4(a: i128, b: i128, overflow: *c_int) callconv(.C) i128 {
return r; return r;
} }
const sa = a >> (i128.bit_count - 1); const sa = a >> (128 - 1);
const abs_a = (a ^ sa) -% sa; const abs_a = (a ^ sa) -% sa;
const sb = b >> (i128.bit_count - 1); const sb = b >> (128 - 1);
const abs_b = (b ^ sb) -% sb; const abs_b = (b ^ sb) -% sb;
if (abs_a < 2 or abs_b < 2) { if (abs_a < 2 or abs_b < 2) {

View File

@ -24,9 +24,8 @@ pub fn __aeabi_dneg(arg: f64) callconv(.AAPCS) f64 {
} }
fn negXf2(comptime T: type, a: T) T { fn negXf2(comptime T: type, a: T) T {
const Z = std.meta.Int(false, T.bit_count); const Z = std.meta.Int(false, @typeInfo(T).Float.bits);
const typeWidth = T.bit_count;
const significandBits = std.math.floatMantissaBits(T); const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T); const exponentBits = std.math.floatExponentBits(T);

View File

@ -9,8 +9,9 @@ const Log2Int = std.math.Log2Int;
fn Dwords(comptime T: type, comptime signed_half: bool) type { fn Dwords(comptime T: type, comptime signed_half: bool) type {
return extern union { return extern union {
pub const HalfTU = std.meta.Int(false, @divExact(T.bit_count, 2)); pub const bits = @divExact(@typeInfo(T).Int.bits, 2);
pub const HalfTS = std.meta.Int(true, @divExact(T.bit_count, 2)); pub const HalfTU = std.meta.Int(false, bits);
pub const HalfTS = std.meta.Int(true, bits);
pub const HalfT = if (signed_half) HalfTS else HalfTU; pub const HalfT = if (signed_half) HalfTS else HalfTU;
all: T, all: T,
@ -30,15 +31,15 @@ pub fn ashlXi3(comptime T: type, a: T, b: i32) T {
const input = dwords{ .all = a }; const input = dwords{ .all = a };
var output: dwords = undefined; var output: dwords = undefined;
if (b >= dwords.HalfT.bit_count) { if (b >= dwords.bits) {
output.s.low = 0; output.s.low = 0;
output.s.high = input.s.low << @intCast(S, b - dwords.HalfT.bit_count); output.s.high = input.s.low << @intCast(S, b - dwords.bits);
} else if (b == 0) { } else if (b == 0) {
return a; return a;
} else { } else {
output.s.low = input.s.low << @intCast(S, b); output.s.low = input.s.low << @intCast(S, b);
output.s.high = input.s.high << @intCast(S, b); output.s.high = input.s.high << @intCast(S, b);
output.s.high |= input.s.low >> @intCast(S, dwords.HalfT.bit_count - b); output.s.high |= input.s.low >> @intCast(S, dwords.bits - b);
} }
return output.all; return output.all;
@ -53,14 +54,14 @@ pub fn ashrXi3(comptime T: type, a: T, b: i32) T {
const input = dwords{ .all = a }; const input = dwords{ .all = a };
var output: dwords = undefined; var output: dwords = undefined;
if (b >= dwords.HalfT.bit_count) { if (b >= dwords.bits) {
output.s.high = input.s.high >> (dwords.HalfT.bit_count - 1); output.s.high = input.s.high >> (dwords.bits - 1);
output.s.low = input.s.high >> @intCast(S, b - dwords.HalfT.bit_count); output.s.low = input.s.high >> @intCast(S, b - dwords.bits);
} else if (b == 0) { } else if (b == 0) {
return a; return a;
} else { } else {
output.s.high = input.s.high >> @intCast(S, b); output.s.high = input.s.high >> @intCast(S, b);
output.s.low = input.s.high << @intCast(S, dwords.HalfT.bit_count - b); output.s.low = input.s.high << @intCast(S, dwords.bits - b);
// Avoid sign-extension here // Avoid sign-extension here
output.s.low |= @bitCast( output.s.low |= @bitCast(
dwords.HalfT, dwords.HalfT,
@ -80,14 +81,14 @@ pub fn lshrXi3(comptime T: type, a: T, b: i32) T {
const input = dwords{ .all = a }; const input = dwords{ .all = a };
var output: dwords = undefined; var output: dwords = undefined;
if (b >= dwords.HalfT.bit_count) { if (b >= dwords.bits) {
output.s.high = 0; output.s.high = 0;
output.s.low = input.s.high >> @intCast(S, b - dwords.HalfT.bit_count); output.s.low = input.s.high >> @intCast(S, b - dwords.bits);
} else if (b == 0) { } else if (b == 0) {
return a; return a;
} else { } else {
output.s.high = input.s.high >> @intCast(S, b); output.s.high = input.s.high >> @intCast(S, b);
output.s.low = input.s.high << @intCast(S, dwords.HalfT.bit_count - b); output.s.low = input.s.high << @intCast(S, dwords.bits - b);
output.s.low |= input.s.low >> @intCast(S, b); output.s.low |= input.s.low >> @intCast(S, b);
} }

View File

@ -50,7 +50,7 @@ fn truncXfYf2(comptime dst_t: type, comptime src_t: type, a: src_t) dst_t {
// Various constants whose values follow from the type parameters. // Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these. // Any reasonable optimizer will fold and propagate all of these.
const srcBits = src_t.bit_count; const srcBits = @typeInfo(src_t).Float.bits;
const srcExpBits = srcBits - srcSigBits - 1; const srcExpBits = srcBits - srcSigBits - 1;
const srcInfExp = (1 << srcExpBits) - 1; const srcInfExp = (1 << srcExpBits) - 1;
const srcExpBias = srcInfExp >> 1; const srcExpBias = srcInfExp >> 1;
@ -65,7 +65,7 @@ fn truncXfYf2(comptime dst_t: type, comptime src_t: type, a: src_t) dst_t {
const srcQNaN = 1 << (srcSigBits - 1); const srcQNaN = 1 << (srcSigBits - 1);
const srcNaNCode = srcQNaN - 1; const srcNaNCode = srcQNaN - 1;
const dstBits = dst_t.bit_count; const dstBits = @typeInfo(dst_t).Float.bits;
const dstExpBits = dstBits - dstSigBits - 1; const dstExpBits = dstBits - dstSigBits - 1;
const dstInfExp = (1 << dstExpBits) - 1; const dstInfExp = (1 << dstExpBits) - 1;
const dstExpBias = dstInfExp >> 1; const dstExpBias = dstInfExp >> 1;

View File

@ -15,8 +15,10 @@ const high = 1 - low;
pub fn udivmod(comptime DoubleInt: type, a: DoubleInt, b: DoubleInt, maybe_rem: ?*DoubleInt) DoubleInt { pub fn udivmod(comptime DoubleInt: type, a: DoubleInt, b: DoubleInt, maybe_rem: ?*DoubleInt) DoubleInt {
@setRuntimeSafety(is_test); @setRuntimeSafety(is_test);
const SingleInt = @import("std").meta.Int(false, @divExact(DoubleInt.bit_count, 2)); const double_int_bits = @typeInfo(DoubleInt).Int.bits;
const SignedDoubleInt = @import("std").meta.Int(true, DoubleInt.bit_count); const single_int_bits = @divExact(double_int_bits, 2);
const SingleInt = @import("std").meta.Int(false, single_int_bits);
const SignedDoubleInt = @import("std").meta.Int(true, double_int_bits);
const Log2SingleInt = @import("std").math.Log2Int(SingleInt); const Log2SingleInt = @import("std").math.Log2Int(SingleInt);
const n = @ptrCast(*const [2]SingleInt, &a).*; // TODO issue #421 const n = @ptrCast(*const [2]SingleInt, &a).*; // TODO issue #421
@ -82,21 +84,21 @@ pub fn udivmod(comptime DoubleInt: type, a: DoubleInt, b: DoubleInt, maybe_rem:
// --- // ---
// K 0 // K 0
sr = @bitCast(c_uint, @as(c_int, @clz(SingleInt, d[high])) - @as(c_int, @clz(SingleInt, n[high]))); sr = @bitCast(c_uint, @as(c_int, @clz(SingleInt, d[high])) - @as(c_int, @clz(SingleInt, n[high])));
// 0 <= sr <= SingleInt.bit_count - 2 or sr large // 0 <= sr <= single_int_bits - 2 or sr large
if (sr > SingleInt.bit_count - 2) { if (sr > single_int_bits - 2) {
if (maybe_rem) |rem| { if (maybe_rem) |rem| {
rem.* = a; rem.* = a;
} }
return 0; return 0;
} }
sr += 1; sr += 1;
// 1 <= sr <= SingleInt.bit_count - 1 // 1 <= sr <= single_int_bits - 1
// q.all = a << (DoubleInt.bit_count - sr); // q.all = a << (double_int_bits - sr);
q[low] = 0; q[low] = 0;
q[high] = n[low] << @intCast(Log2SingleInt, SingleInt.bit_count - sr); q[high] = n[low] << @intCast(Log2SingleInt, single_int_bits - sr);
// r.all = a >> sr; // r.all = a >> sr;
r[high] = n[high] >> @intCast(Log2SingleInt, sr); r[high] = n[high] >> @intCast(Log2SingleInt, sr);
r[low] = (n[high] << @intCast(Log2SingleInt, SingleInt.bit_count - sr)) | (n[low] >> @intCast(Log2SingleInt, sr)); r[low] = (n[high] << @intCast(Log2SingleInt, single_int_bits - sr)) | (n[low] >> @intCast(Log2SingleInt, sr));
} else { } else {
// d[low] != 0 // d[low] != 0
if (d[high] == 0) { if (d[high] == 0) {
@ -113,74 +115,74 @@ pub fn udivmod(comptime DoubleInt: type, a: DoubleInt, b: DoubleInt, maybe_rem:
} }
sr = @ctz(SingleInt, d[low]); sr = @ctz(SingleInt, d[low]);
q[high] = n[high] >> @intCast(Log2SingleInt, sr); q[high] = n[high] >> @intCast(Log2SingleInt, sr);
q[low] = (n[high] << @intCast(Log2SingleInt, SingleInt.bit_count - sr)) | (n[low] >> @intCast(Log2SingleInt, sr)); q[low] = (n[high] << @intCast(Log2SingleInt, single_int_bits - sr)) | (n[low] >> @intCast(Log2SingleInt, sr));
return @ptrCast(*align(@alignOf(SingleInt)) DoubleInt, &q[0]).*; // TODO issue #421 return @ptrCast(*align(@alignOf(SingleInt)) DoubleInt, &q[0]).*; // TODO issue #421
} }
// K X // K X
// --- // ---
// 0 K // 0 K
sr = 1 + SingleInt.bit_count + @as(c_uint, @clz(SingleInt, d[low])) - @as(c_uint, @clz(SingleInt, n[high])); sr = 1 + single_int_bits + @as(c_uint, @clz(SingleInt, d[low])) - @as(c_uint, @clz(SingleInt, n[high]));
// 2 <= sr <= DoubleInt.bit_count - 1 // 2 <= sr <= double_int_bits - 1
// q.all = a << (DoubleInt.bit_count - sr); // q.all = a << (double_int_bits - sr);
// r.all = a >> sr; // r.all = a >> sr;
if (sr == SingleInt.bit_count) { if (sr == single_int_bits) {
q[low] = 0; q[low] = 0;
q[high] = n[low]; q[high] = n[low];
r[high] = 0; r[high] = 0;
r[low] = n[high]; r[low] = n[high];
} else if (sr < SingleInt.bit_count) { } else if (sr < single_int_bits) {
// 2 <= sr <= SingleInt.bit_count - 1 // 2 <= sr <= single_int_bits - 1
q[low] = 0; q[low] = 0;
q[high] = n[low] << @intCast(Log2SingleInt, SingleInt.bit_count - sr); q[high] = n[low] << @intCast(Log2SingleInt, single_int_bits - sr);
r[high] = n[high] >> @intCast(Log2SingleInt, sr); r[high] = n[high] >> @intCast(Log2SingleInt, sr);
r[low] = (n[high] << @intCast(Log2SingleInt, SingleInt.bit_count - sr)) | (n[low] >> @intCast(Log2SingleInt, sr)); r[low] = (n[high] << @intCast(Log2SingleInt, single_int_bits - sr)) | (n[low] >> @intCast(Log2SingleInt, sr));
} else { } else {
// SingleInt.bit_count + 1 <= sr <= DoubleInt.bit_count - 1 // single_int_bits + 1 <= sr <= double_int_bits - 1
q[low] = n[low] << @intCast(Log2SingleInt, DoubleInt.bit_count - sr); q[low] = n[low] << @intCast(Log2SingleInt, double_int_bits - sr);
q[high] = (n[high] << @intCast(Log2SingleInt, DoubleInt.bit_count - sr)) | (n[low] >> @intCast(Log2SingleInt, sr - SingleInt.bit_count)); q[high] = (n[high] << @intCast(Log2SingleInt, double_int_bits - sr)) | (n[low] >> @intCast(Log2SingleInt, sr - single_int_bits));
r[high] = 0; r[high] = 0;
r[low] = n[high] >> @intCast(Log2SingleInt, sr - SingleInt.bit_count); r[low] = n[high] >> @intCast(Log2SingleInt, sr - single_int_bits);
} }
} else { } else {
// K X // K X
// --- // ---
// K K // K K
sr = @bitCast(c_uint, @as(c_int, @clz(SingleInt, d[high])) - @as(c_int, @clz(SingleInt, n[high]))); sr = @bitCast(c_uint, @as(c_int, @clz(SingleInt, d[high])) - @as(c_int, @clz(SingleInt, n[high])));
// 0 <= sr <= SingleInt.bit_count - 1 or sr large // 0 <= sr <= single_int_bits - 1 or sr large
if (sr > SingleInt.bit_count - 1) { if (sr > single_int_bits - 1) {
if (maybe_rem) |rem| { if (maybe_rem) |rem| {
rem.* = a; rem.* = a;
} }
return 0; return 0;
} }
sr += 1; sr += 1;
// 1 <= sr <= SingleInt.bit_count // 1 <= sr <= single_int_bits
// q.all = a << (DoubleInt.bit_count - sr); // q.all = a << (double_int_bits - sr);
// r.all = a >> sr; // r.all = a >> sr;
q[low] = 0; q[low] = 0;
if (sr == SingleInt.bit_count) { if (sr == single_int_bits) {
q[high] = n[low]; q[high] = n[low];
r[high] = 0; r[high] = 0;
r[low] = n[high]; r[low] = n[high];
} else { } else {
r[high] = n[high] >> @intCast(Log2SingleInt, sr); r[high] = n[high] >> @intCast(Log2SingleInt, sr);
r[low] = (n[high] << @intCast(Log2SingleInt, SingleInt.bit_count - sr)) | (n[low] >> @intCast(Log2SingleInt, sr)); r[low] = (n[high] << @intCast(Log2SingleInt, single_int_bits - sr)) | (n[low] >> @intCast(Log2SingleInt, sr));
q[high] = n[low] << @intCast(Log2SingleInt, SingleInt.bit_count - sr); q[high] = n[low] << @intCast(Log2SingleInt, single_int_bits - sr);
} }
} }
} }
// Not a special case // Not a special case
// q and r are initialized with: // q and r are initialized with:
// q.all = a << (DoubleInt.bit_count - sr); // q.all = a << (double_int_bits - sr);
// r.all = a >> sr; // r.all = a >> sr;
// 1 <= sr <= DoubleInt.bit_count - 1 // 1 <= sr <= double_int_bits - 1
var carry: u32 = 0; var carry: u32 = 0;
var r_all: DoubleInt = undefined; var r_all: DoubleInt = undefined;
while (sr > 0) : (sr -= 1) { while (sr > 0) : (sr -= 1) {
// r:q = ((r:q) << 1) | carry // r:q = ((r:q) << 1) | carry
r[high] = (r[high] << 1) | (r[low] >> (SingleInt.bit_count - 1)); r[high] = (r[high] << 1) | (r[low] >> (single_int_bits - 1));
r[low] = (r[low] << 1) | (q[high] >> (SingleInt.bit_count - 1)); r[low] = (r[low] << 1) | (q[high] >> (single_int_bits - 1));
q[high] = (q[high] << 1) | (q[low] >> (SingleInt.bit_count - 1)); q[high] = (q[high] << 1) | (q[low] >> (single_int_bits - 1));
q[low] = (q[low] << 1) | carry; q[low] = (q[low] << 1) | carry;
// carry = 0; // carry = 0;
// if (r.all >= b) // if (r.all >= b)
@ -189,7 +191,7 @@ pub fn udivmod(comptime DoubleInt: type, a: DoubleInt, b: DoubleInt, maybe_rem:
// carry = 1; // carry = 1;
// } // }
r_all = @ptrCast(*align(@alignOf(SingleInt)) DoubleInt, &r[0]).*; // TODO issue #421 r_all = @ptrCast(*align(@alignOf(SingleInt)) DoubleInt, &r[0]).*; // TODO issue #421
const s: SignedDoubleInt = @bitCast(SignedDoubleInt, b -% r_all -% 1) >> (DoubleInt.bit_count - 1); const s: SignedDoubleInt = @bitCast(SignedDoubleInt, b -% r_all -% 1) >> (double_int_bits - 1);
carry = @intCast(u32, s & 1); carry = @intCast(u32, s & 1);
r_all -= b & @bitCast(DoubleInt, s); r_all -= b & @bitCast(DoubleInt, s);
r = @ptrCast(*[2]SingleInt, &r_all).*; // TODO issue #421 r = @ptrCast(*[2]SingleInt, &r_all).*; // TODO issue #421

View File

@ -239,7 +239,7 @@ fn callMainAsync(loop: *std.event.Loop) callconv(.Async) u8 {
// This is not marked inline because it is called with @asyncCall when // This is not marked inline because it is called with @asyncCall when
// there is an event loop. // there is an event loop.
pub fn callMain() u8 { pub fn callMain() u8 {
switch (@typeInfo(@TypeOf(root.main).ReturnType)) { switch (@typeInfo(@typeInfo(@TypeOf(root.main)).Fn.return_type.?)) {
.NoReturn => { .NoReturn => {
root.main(); root.main();
}, },

View File

@ -166,7 +166,7 @@ pub const Thread = struct {
fn threadMain(raw_arg: windows.LPVOID) callconv(.C) windows.DWORD { fn threadMain(raw_arg: windows.LPVOID) callconv(.C) windows.DWORD {
const arg = if (@sizeOf(Context) == 0) {} else @ptrCast(*Context, @alignCast(@alignOf(Context), raw_arg)).*; const arg = if (@sizeOf(Context) == 0) {} else @ptrCast(*Context, @alignCast(@alignOf(Context), raw_arg)).*;
switch (@typeInfo(@TypeOf(startFn).ReturnType)) { switch (@typeInfo(@typeInfo(@TypeOf(startFn)).Fn.return_type.?)) {
.NoReturn => { .NoReturn => {
startFn(arg); startFn(arg);
}, },
@ -227,7 +227,7 @@ pub const Thread = struct {
fn linuxThreadMain(ctx_addr: usize) callconv(.C) u8 { fn linuxThreadMain(ctx_addr: usize) callconv(.C) u8 {
const arg = if (@sizeOf(Context) == 0) {} else @intToPtr(*const Context, ctx_addr).*; const arg = if (@sizeOf(Context) == 0) {} else @intToPtr(*const Context, ctx_addr).*;
switch (@typeInfo(@TypeOf(startFn).ReturnType)) { switch (@typeInfo(@typeInfo(@TypeOf(startFn)).Fn.return_type.?)) {
.NoReturn => { .NoReturn => {
startFn(arg); startFn(arg);
}, },
@ -259,7 +259,7 @@ pub const Thread = struct {
fn posixThreadMain(ctx: ?*c_void) callconv(.C) ?*c_void { fn posixThreadMain(ctx: ?*c_void) callconv(.C) ?*c_void {
const arg = if (@sizeOf(Context) == 0) {} else @ptrCast(*Context, @alignCast(@alignOf(Context), ctx)).*; const arg = if (@sizeOf(Context) == 0) {} else @ptrCast(*Context, @alignCast(@alignOf(Context), ctx)).*;
switch (@typeInfo(@TypeOf(startFn).ReturnType)) { switch (@typeInfo(@typeInfo(@TypeOf(startFn)).Fn.return_type.?)) {
.NoReturn => { .NoReturn => {
startFn(arg); startFn(arg);
}, },

View File

@ -22,7 +22,7 @@ pub const SrcHash = [16]u8;
/// If it is long, blake3 hash is computed. /// If it is long, blake3 hash is computed.
pub fn hashSrc(src: []const u8) SrcHash { pub fn hashSrc(src: []const u8) SrcHash {
var out: SrcHash = undefined; var out: SrcHash = undefined;
if (src.len <= SrcHash.len) { if (src.len <= @typeInfo(SrcHash).Array.len) {
std.mem.copy(u8, &out, src); std.mem.copy(u8, &out, src);
std.mem.set(u8, out[src.len..], 0); std.mem.set(u8, out[src.len..], 0);
} else { } else {

View File

@ -5,7 +5,7 @@ const builtin = @import("builtin");
var foo: u8 align(4) = 100; var foo: u8 align(4) = 100;
test "global variable alignment" { test "global variable alignment" {
comptime expect(@TypeOf(&foo).alignment == 4); comptime expect(@typeInfo(@TypeOf(&foo)).Pointer.alignment == 4);
comptime expect(@TypeOf(&foo) == *align(4) u8); comptime expect(@TypeOf(&foo) == *align(4) u8);
{ {
const slice = @as(*[1]u8, &foo)[0..]; const slice = @as(*[1]u8, &foo)[0..];

View File

@ -136,16 +136,6 @@ test "array literal with specified size" {
expect(array[1] == 2); expect(array[1] == 2);
} }
test "array child property" {
var x: [5]i32 = undefined;
expect(@TypeOf(x).Child == i32);
}
test "array len property" {
var x: [5]i32 = undefined;
expect(@TypeOf(x).len == 5);
}
test "array len field" { test "array len field" {
var arr = [4]u8{ 0, 0, 0, 0 }; var arr = [4]u8{ 0, 0, 0, 0 };
var ptr = &arr; var ptr = &arr;

View File

@ -331,7 +331,7 @@ test "async fn with inferred error set" {
fn doTheTest() void { fn doTheTest() void {
var frame: [1]@Frame(middle) = undefined; var frame: [1]@Frame(middle) = undefined;
var fn_ptr = middle; var fn_ptr = middle;
var result: @TypeOf(fn_ptr).ReturnType.ErrorSet!void = undefined; var result: @typeInfo(@typeInfo(@TypeOf(fn_ptr)).Fn.return_type.?).ErrorUnion.error_set!void = undefined;
_ = @asyncCall(std.mem.sliceAsBytes(frame[0..]), &result, fn_ptr, .{}); _ = @asyncCall(std.mem.sliceAsBytes(frame[0..]), &result, fn_ptr, .{});
resume global_frame; resume global_frame;
std.testing.expectError(error.Fail, result); std.testing.expectError(error.Fail, result);
@ -950,7 +950,7 @@ test "@asyncCall with comptime-known function, but not awaited directly" {
fn doTheTest() void { fn doTheTest() void {
var frame: [1]@Frame(middle) = undefined; var frame: [1]@Frame(middle) = undefined;
var result: @TypeOf(middle).ReturnType.ErrorSet!void = undefined; var result: @typeInfo(@typeInfo(@TypeOf(middle)).Fn.return_type.?).ErrorUnion.error_set!void = undefined;
_ = @asyncCall(std.mem.sliceAsBytes(frame[0..]), &result, middle, .{}); _ = @asyncCall(std.mem.sliceAsBytes(frame[0..]), &result, middle, .{});
resume global_frame; resume global_frame;
std.testing.expectError(error.Fail, result); std.testing.expectError(error.Fail, result);
@ -1018,7 +1018,7 @@ test "@TypeOf an async function call of generic fn with error union type" {
const S = struct { const S = struct {
fn func(comptime x: anytype) anyerror!i32 { fn func(comptime x: anytype) anyerror!i32 {
const T = @TypeOf(async func(x)); const T = @TypeOf(async func(x));
comptime expect(T == @TypeOf(@frame()).Child); comptime expect(T == @typeInfo(@TypeOf(@frame())).Pointer.child);
return undefined; return undefined;
} }
}; };

View File

@ -2,16 +2,18 @@ const std = @import("std");
const expect = std.testing.expect; const expect = std.testing.expect;
fn ShardedTable(comptime Key: type, comptime mask_bit_count: comptime_int, comptime V: type) type { fn ShardedTable(comptime Key: type, comptime mask_bit_count: comptime_int, comptime V: type) type {
expect(Key == std.meta.Int(false, Key.bit_count)); const key_bits = @typeInfo(Key).Int.bits;
expect(Key.bit_count >= mask_bit_count); expect(Key == std.meta.Int(false, key_bits));
expect(key_bits >= mask_bit_count);
const shard_key_bits = mask_bit_count;
const ShardKey = std.meta.Int(false, mask_bit_count); const ShardKey = std.meta.Int(false, mask_bit_count);
const shift_amount = Key.bit_count - ShardKey.bit_count; const shift_amount = key_bits - shard_key_bits;
return struct { return struct {
const Self = @This(); const Self = @This();
shards: [1 << ShardKey.bit_count]?*Node, shards: [1 << shard_key_bits]?*Node,
pub fn create() Self { pub fn create() Self {
return Self{ .shards = [_]?*Node{null} ** (1 << ShardKey.bit_count) }; return Self{ .shards = [_]?*Node{null} ** (1 << shard_key_bits) };
} }
fn getShardKey(key: Key) ShardKey { fn getShardKey(key: Key) ShardKey {

View File

@ -3,8 +3,8 @@ const io = @import("std").io;
pub fn write(_: void, bytes: []const u8) !usize { pub fn write(_: void, bytes: []const u8) !usize {
return 0; return 0;
} }
pub fn outStream() io.OutStream(void, @TypeOf(write).ReturnType.ErrorSet, write) { pub fn outStream() io.OutStream(void, @typeInfo(@typeInfo(@TypeOf(write)).Fn.return_type.?).ErrorUnion.error_set, write) {
return io.OutStream(void, @TypeOf(write).ReturnType.ErrorSet, write){ .context = {} }; return io.OutStream(void, @typeInfo(@typeInfo(@TypeOf(write)).Fn.return_type.?).ErrorUnion.error_set, write){ .context = {} };
} }
test "crash" { test "crash" {

View File

@ -84,8 +84,8 @@ fn testErrorUnionType() void {
const x: anyerror!i32 = 1234; const x: anyerror!i32 = 1234;
if (x) |value| expect(value == 1234) else |_| unreachable; if (x) |value| expect(value == 1234) else |_| unreachable;
expect(@typeInfo(@TypeOf(x)) == .ErrorUnion); expect(@typeInfo(@TypeOf(x)) == .ErrorUnion);
expect(@typeInfo(@TypeOf(x).ErrorSet) == .ErrorSet); expect(@typeInfo(@typeInfo(@TypeOf(x)).ErrorUnion.error_set) == .ErrorSet);
expect(@TypeOf(x).ErrorSet == anyerror); expect(@typeInfo(@TypeOf(x)).ErrorUnion.error_set == anyerror);
} }
test "error set type" { test "error set type" {

View File

@ -24,12 +24,6 @@ test "call disabled extern fn" {
disabledExternFn(); disabledExternFn();
} }
test "floating point primitive bit counts" {
expect(f16.bit_count == 16);
expect(f32.bit_count == 32);
expect(f64.bit_count == 64);
}
test "short circuit" { test "short circuit" {
testShortCircuit(false, true); testShortCircuit(false, true);
comptime testShortCircuit(false, true); comptime testShortCircuit(false, true);
@ -577,10 +571,6 @@ test "slice string literal has correct type" {
comptime expect(@TypeOf(array[runtime_zero..]) == []const i32); comptime expect(@TypeOf(array[runtime_zero..]) == []const i32);
} }
test "pointer child field" {
expect((*u32).Child == u32);
}
test "struct inside function" { test "struct inside function" {
testStructInFn(); testStructInFn();
comptime testStructInFn(); comptime testStructInFn();

View File

@ -2,23 +2,15 @@ const expect = @import("std").testing.expect;
const mem = @import("std").mem; const mem = @import("std").mem;
const reflection = @This(); const reflection = @This();
test "reflection: array, pointer, optional, error union type child" {
comptime {
expect(([10]u8).Child == u8);
expect((*u8).Child == u8);
expect((anyerror!u8).Payload == u8);
expect((?u8).Child == u8);
}
}
test "reflection: function return type, var args, and param types" { test "reflection: function return type, var args, and param types" {
comptime { comptime {
expect(@TypeOf(dummy).ReturnType == i32); const info = @typeInfo(@TypeOf(dummy)).Fn;
expect(!@TypeOf(dummy).is_var_args); expect(info.return_type.? == i32);
expect(@TypeOf(dummy).arg_count == 3); expect(!info.is_var_args);
expect(@typeInfo(@TypeOf(dummy)).Fn.args[0].arg_type.? == bool); expect(info.args.len == 3);
expect(@typeInfo(@TypeOf(dummy)).Fn.args[1].arg_type.? == i32); expect(info.args[0].arg_type.? == bool);
expect(@typeInfo(@TypeOf(dummy)).Fn.args[2].arg_type.? == f32); expect(info.args[1].arg_type.? == i32);
expect(info.args[2].arg_type.? == f32);
} }
} }