elf: port zld's allocation mechanism

This commit is contained in:
Jakub Konka 2023-10-03 09:22:43 +02:00
parent 860beda55f
commit 1b70ad622b
2 changed files with 380 additions and 52 deletions

View File

@ -1247,17 +1247,16 @@ pub fn flushModule(self: *Elf, comp: *Compilation, prog_node: *std.Progress.Node
try self.sortSections();
try self.updateSectionSizes();
try self.allocateSections();
self.allocateAtoms();
self.allocateLinkerDefinedSymbols();
// Dump the state for easy debugging.
// State can be dumped via `--debug-log link_state`.
if (build_options.enable_logging) {
state_log.debug("{}", .{self.dumpState()});
}
// Allocate atoms parsed from input object files, followed by allocating
// linker-defined synthetic symbols.
try self.allocateObjects();
self.allocateLinkerDefinedSymbols();
// Look for entry address in objects if not set by the incremental compiler.
if (self.entry_addr == null) {
const entry: ?[]const u8 = entry: {
@ -1757,34 +1756,6 @@ fn scanRelocs(self: *Elf) !void {
}
}
fn allocateObjects(self: *Elf) !void {
for (self.objects.items) |index| {
const object = self.file(index).?.object;
for (object.atoms.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive or atom_ptr.flags.allocated) continue;
try atom_ptr.allocate(self);
}
for (object.locals()) |local_index| {
const local = self.symbol(local_index);
const atom_ptr = local.atom(self) orelse continue;
if (!atom_ptr.flags.alive) continue;
local.value = local.elfSym(self).st_value + atom_ptr.value;
}
for (object.globals()) |global_index| {
const global = self.symbol(global_index);
const atom_ptr = global.atom(self) orelse continue;
if (!atom_ptr.flags.alive) continue;
if (global.file_index == index) {
global.value = global.elfSym(self).st_value + atom_ptr.value;
}
}
}
}
fn writeObjects(self: *Elf) !void {
const gpa = self.base.allocator;
@ -3398,14 +3369,9 @@ fn allocateLinkerDefinedSymbols(self: *Elf) void {
// _end
{
const end_symbol = self.symbol(self.end_index.?);
end_symbol.value = 0;
for (self.shdrs.items, 0..) |*shdr, shndx| {
if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue;
const phdr_index = self.phdr_to_shdr_table.get(@intCast(shndx)).?;
const phdr = self.phdrs.items[phdr_index];
const value = phdr.p_vaddr + phdr.p_memsz;
if (end_symbol.value < value) {
end_symbol.value = value;
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_flags & elf.SHF_ALLOC != 0) {
end_symbol.value = shdr.sh_addr + shdr.sh_size;
end_symbol.output_section_index = @intCast(shndx);
}
}
@ -3440,7 +3406,7 @@ fn initSections(self: *Elf) !void {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const shdr = atom_ptr.inputShdr(self);
atom_ptr.output_section_index = try object.getOutputSectionIndex(self, shdr);
atom_ptr.output_section_index = try object.initOutputSection(self, shdr);
}
}
@ -3605,11 +3571,323 @@ fn updateSectionSizes(self: *Elf) !void {
if (self.got_section_index) |_| {
try self.got.updateStrtab(self);
}
try self.growNonAllocSection(index, self.strtab.buffer.items.len, 1, false);
self.shdrs.items[index].sh_size = self.strtab.buffer.items.len;
// try self.growNonAllocSection(index, self.strtab.buffer.items.len, 1, false);
}
if (self.shstrtab_section_index) |index| {
try self.growNonAllocSection(index, self.shstrtab.buffer.items.len, 1, false);
self.shdrs.items[index].sh_size = self.shstrtab.buffer.items.len;
// try self.growNonAllocSection(index, self.shstrtab.buffer.items.len, 1, false);
}
}
fn initPhdrs(self: *Elf) !void {
// Add PHDR phdr
const phdr_index = try self.addPhdr(.{
.type = elf.PT_PHDR,
.flags = elf.PF_R,
.@"align" = @alignOf(elf.Elf64_Phdr),
.addr = self.calcImageBase() + @sizeOf(elf.Elf64_Ehdr),
.offset = @sizeOf(elf.Elf64_Ehdr),
});
// Add INTERP phdr if required
// if (self.interp_sect_index) |index| {
// const shdr = self.sections.items(.shdr)[index];
// _ = try self.addPhdr(.{
// .type = elf.PT_INTERP,
// .flags = elf.PF_R,
// .@"align" = 1,
// .offset = shdr.sh_offset,
// .addr = shdr.sh_addr,
// .filesz = shdr.sh_size,
// .memsz = shdr.sh_size,
// });
// }
// Add LOAD phdrs
const slice = self.shdrs.items;
{
var last_phdr: ?u16 = null;
var shndx: usize = 0;
while (shndx < slice.len) {
const shdr = &slice[shndx];
if (!shdrIsAlloc(shdr) or shdrIsTbss(shdr)) {
shndx += 1;
continue;
}
last_phdr = try self.addPhdr(.{
.type = elf.PT_LOAD,
.flags = shdrToPhdrFlags(shdr.sh_flags),
.@"align" = @max(self.page_size, shdr.sh_addralign),
.offset = if (last_phdr == null) 0 else shdr.sh_offset,
.addr = if (last_phdr == null) self.calcImageBase() else shdr.sh_addr,
});
const p_flags = self.phdrs.items[last_phdr.?].p_flags;
try self.addShdrToPhdr(last_phdr.?, shdr);
shndx += 1;
while (shndx < slice.len) : (shndx += 1) {
const next = &slice[shndx];
if (shdrIsTbss(next)) continue;
if (p_flags == shdrToPhdrFlags(next.sh_flags)) {
if (shdrIsBss(next) or next.sh_offset - shdr.sh_offset == next.sh_addr - shdr.sh_addr) {
try self.addShdrToPhdr(last_phdr.?, next);
continue;
}
}
break;
}
}
}
// Add TLS phdr
{
var shndx: usize = 0;
outer: while (shndx < slice.len) {
const shdr = &slice[shndx];
if (!shdrIsTls(shdr)) {
shndx += 1;
continue;
}
self.phdr_tls_index = try self.addPhdr(.{
.type = elf.PT_TLS,
.flags = elf.PF_R,
.@"align" = shdr.sh_addralign,
.offset = shdr.sh_offset,
.addr = shdr.sh_addr,
});
try self.addShdrToPhdr(self.phdr_tls_index.?, shdr);
shndx += 1;
while (shndx < slice.len) : (shndx += 1) {
const next = &slice[shndx];
if (!shdrIsTls(next)) continue :outer;
try self.addShdrToPhdr(self.phdr_tls_index.?, next);
}
}
}
// Add DYNAMIC phdr
// if (self.dynamic_sect_index) |index| {
// const shdr = self.sections.items(.shdr)[index];
// _ = try self.addPhdr(.{
// .type = elf.PT_DYNAMIC,
// .flags = elf.PF_R | elf.PF_W,
// .@"align" = shdr.sh_addralign,
// .offset = shdr.sh_offset,
// .addr = shdr.sh_addr,
// .memsz = shdr.sh_size,
// .filesz = shdr.sh_size,
// });
// }
// Add PT_GNU_EH_FRAME phdr if required.
if (self.eh_frame_hdr_section_index) |index| {
const shdr = self.shdrs.items[index];
_ = try self.addPhdr(.{
.type = elf.PT_GNU_EH_FRAME,
.flags = elf.PF_R,
.@"align" = shdr.sh_addralign,
.offset = shdr.sh_offset,
.addr = shdr.sh_addr,
.memsz = shdr.sh_size,
.filesz = shdr.sh_size,
});
}
// Add PT_GNU_STACK phdr that controls some stack attributes that apparently may or may not
// be respected by the OS.
_ = try self.addPhdr(.{
.type = elf.PT_GNU_STACK,
.flags = elf.PF_W | elf.PF_R,
.memsz = self.base.options.stack_size_override orelse 0,
.@"align" = 1,
});
// Backpatch size of the PHDR phdr
{
const phdr = &self.phdrs.items[phdr_index];
const size = @sizeOf(elf.Elf64_Phdr) * self.phdrs.items.len;
phdr.p_filesz = size;
phdr.p_memsz = size;
}
}
fn addShdrToPhdr(self: *Elf, phdr_index: u16, shdr: *const elf.Elf64_Shdr) !void {
const phdr = &self.phdrs.items[phdr_index];
phdr.p_align = @max(phdr.p_align, shdr.sh_addralign);
if (shdr.sh_type != elf.SHT_NOBITS) {
phdr.p_filesz = shdr.sh_addr + shdr.sh_size - phdr.p_vaddr;
}
phdr.p_memsz = shdr.sh_addr + shdr.sh_size - phdr.p_vaddr;
}
fn shdrToPhdrFlags(sh_flags: u64) u32 {
const write = sh_flags & elf.SHF_WRITE != 0;
const exec = sh_flags & elf.SHF_EXECINSTR != 0;
var out_flags: u32 = elf.PF_R;
if (write) out_flags |= elf.PF_W;
if (exec) out_flags |= elf.PF_X;
return out_flags;
}
inline fn shdrIsAlloc(shdr: *const elf.Elf64_Shdr) bool {
return shdr.sh_flags & elf.SHF_ALLOC != 0;
}
inline fn shdrIsBss(shdr: *const elf.Elf64_Shdr) bool {
return shdrIsZerofill(shdr) and !shdrIsTls(shdr);
}
inline fn shdrIsTbss(shdr: *const elf.Elf64_Shdr) bool {
return shdrIsZerofill(shdr) and shdrIsTls(shdr);
}
inline fn shdrIsZerofill(shdr: *const elf.Elf64_Shdr) bool {
return shdr.sh_type == elf.SHT_NOBITS;
}
pub inline fn shdrIsTls(shdr: *const elf.Elf64_Shdr) bool {
return shdr.sh_flags & elf.SHF_TLS != 0;
}
fn allocateSectionsInMemory(self: *Elf, base_offset: u64) !void {
// We use this struct to track maximum alignment of all TLS sections.
// According to https://github.com/rui314/mold/commit/bd46edf3f0fe9e1a787ea453c4657d535622e61f in mold,
// in-file offsets have to be aligned against the start of TLS program header.
// If that's not ensured, then in a multi-threaded context, TLS variables across a shared object
// boundary may not get correctly loaded at an aligned address.
const Align = struct {
tls_start_align: u64 = 1,
first_tls_index: ?usize = null,
inline fn isFirstTlsShdr(this: @This(), other: usize) bool {
if (this.first_tls_index) |index| return index == other;
return false;
}
inline fn @"align"(this: @This(), index: usize, sh_addralign: u64, addr: u64) u64 {
const alignment = if (this.isFirstTlsShdr(index)) this.tls_start_align else sh_addralign;
return mem.alignForward(u64, addr, alignment);
}
};
var alignment = Align{};
for (self.shdrs.items, 0..) |*shdr, i| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (!shdrIsTls(shdr)) continue;
if (alignment.first_tls_index == null) alignment.first_tls_index = i;
alignment.tls_start_align = @max(alignment.tls_start_align, shdr.sh_addralign);
}
var addr = self.calcImageBase() + base_offset;
var i: usize = 0;
while (i < self.shdrs.items.len) : (i += 1) {
const shdr = &self.shdrs.items[i];
if (shdr.sh_type == elf.SHT_NULL) continue;
if (!shdrIsAlloc(shdr)) continue;
if (i > 0) {
const prev_shdr = self.shdrs.items[i - 1];
if (shdrToPhdrFlags(shdr.sh_flags) != shdrToPhdrFlags(prev_shdr.sh_flags)) {
// We need to advance by page size
addr += self.page_size;
}
}
if (shdrIsTbss(shdr)) {
// .tbss is a little special as it's used only by the loader meaning it doesn't
// need to be actually mmap'ed at runtime. We still need to correctly increment
// the addresses of every TLS zerofill section tho. Thus, we hack it so that
// we increment the start address like normal, however, after we are done,
// the next ALLOC section will get its start address allocated within the same
// range as the .tbss sections. We will get something like this:
//
// ...
// .tbss 0x10
// .tcommon 0x20
// .data 0x10
// ...
var tbss_addr = addr;
while (i < self.shdrs.items.len and shdrIsTbss(&self.shdrs.items[i])) : (i += 1) {
const tbss_shdr = &self.shdrs.items[i];
tbss_addr = alignment.@"align"(i, tbss_shdr.sh_addralign, tbss_addr);
tbss_shdr.sh_addr = tbss_addr;
tbss_addr += tbss_shdr.sh_size;
}
i -= 1;
continue;
}
addr = alignment.@"align"(i, shdr.sh_addralign, addr);
shdr.sh_addr = addr;
addr += shdr.sh_size;
}
}
fn allocateSectionsInFile(self: *Elf, base_offset: u64) void {
var offset = base_offset;
var i: usize = 0;
while (i < self.shdrs.items.len) {
const first = &self.shdrs.items[i];
defer if (!shdrIsAlloc(first) or shdrIsZerofill(first)) {
i += 1;
};
if (first.sh_type == elf.SHT_NULL) continue;
// Non-alloc sections don't need congruency with their allocated virtual memory addresses
if (!shdrIsAlloc(first)) {
first.sh_offset = mem.alignForward(u64, offset, first.sh_addralign);
offset = first.sh_offset + first.sh_size;
continue;
}
// Skip any zerofill section
if (shdrIsZerofill(first)) continue;
// Set the offset to a value that is congruent with the section's allocated virtual memory address
if (first.sh_addralign > self.page_size) {
offset = mem.alignForward(u64, offset, first.sh_addralign);
} else {
const val = mem.alignBackward(u64, offset, self.page_size) + @rem(first.sh_addr, self.page_size);
offset = if (offset <= val) val else val + self.page_size;
}
while (true) {
const prev = &self.shdrs.items[i];
prev.sh_offset = offset + prev.sh_addr - first.sh_addr;
i += 1;
const next = &self.shdrs.items[i];
if (i >= self.shdrs.items.len or !shdrIsAlloc(next) or shdrIsZerofill(next)) break;
if (next.sh_addr < first.sh_addr) break;
const gap = next.sh_addr - prev.sh_addr - prev.sh_size;
if (gap >= self.page_size) break;
}
const prev = &self.shdrs.items[i - 1];
offset = prev.sh_offset + prev.sh_size;
// Skip any zerofill section
while (i < self.shdrs.items.len and shdrIsAlloc(&self.shdrs.items[i]) and shdrIsZerofill(&self.shdrs.items[i])) : (i += 1) {}
}
}
fn allocateSections(self: *Elf) !void {
while (true) {
const nphdrs = self.phdrs.items.len;
const base_offset: u64 = @sizeOf(elf.Elf64_Ehdr) + nphdrs * @sizeOf(elf.Elf64_Phdr);
try self.allocateSectionsInMemory(base_offset);
self.allocateSectionsInFile(base_offset);
self.phdrs.clearRetainingCapacity();
try self.initPhdrs();
if (nphdrs == self.phdrs.items.len) break;
}
}
fn allocateAtoms(self: *Elf) void {
for (self.objects.items) |index| {
self.file(index).?.object.allocateAtoms(self);
}
}
@ -3649,12 +3927,13 @@ fn updateSymtabSize(self: *Elf) !void {
.p32 => @sizeOf(elf.Elf32_Sym),
.p64 => @sizeOf(elf.Elf64_Sym),
};
const sym_align: u16 = switch (self.ptr_width) {
.p32 => @alignOf(elf.Elf32_Sym),
.p64 => @alignOf(elf.Elf64_Sym),
};
// const sym_align: u16 = switch (self.ptr_width) {
// .p32 => @alignOf(elf.Elf32_Sym),
// .p64 => @alignOf(elf.Elf64_Sym),
// };
const needed_size = (sizes.nlocals + sizes.nglobals + 1) * sym_size;
try self.growNonAllocSection(self.symtab_section_index.?, needed_size, sym_align, false);
shdr.sh_size = needed_size;
// try self.growNonAllocSection(self.symtab_section_index.?, needed_size, sym_align, false);
}
fn writeSyntheticSections(self: *Elf) !void {
@ -4084,6 +4363,29 @@ pub fn isDynLib(self: Elf) bool {
return self.base.options.output_mode == .Lib and self.base.options.link_mode == .Dynamic;
}
fn addPhdr(self: *Elf, opts: struct {
type: u32 = 0,
flags: u32 = 0,
@"align": u64 = 0,
offset: u64 = 0,
addr: u64 = 0,
filesz: u64 = 0,
memsz: u64 = 0,
}) !u16 {
const index = @as(u16, @intCast(self.phdrs.items.len));
try self.phdrs.append(self.base.allocator, .{
.p_type = opts.type,
.p_flags = opts.flags,
.p_offset = opts.offset,
.p_vaddr = opts.addr,
.p_paddr = opts.addr,
.p_filesz = opts.filesz,
.p_memsz = opts.memsz,
.p_align = opts.@"align",
});
return index;
}
pub const AddSectionOpts = struct {
name: [:0]const u8,
type: u32 = elf.SHT_NULL,

View File

@ -193,7 +193,7 @@ fn addAtom(
}
}
pub fn getOutputSectionIndex(self: Object, elf_file: *Elf, shdr: elf.Elf64_Shdr) error{OutOfMemory}!u16 {
pub fn initOutputSection(self: Object, elf_file: *Elf, shdr: elf.Elf64_Shdr) error{OutOfMemory}!u16 {
const name = blk: {
const name = self.strings.getAssumeExists(shdr.sh_name);
if (shdr.sh_flags & elf.SHF_MERGE != 0) break :blk name;
@ -614,6 +614,32 @@ pub fn updateSectionSizes(self: Object, elf_file: *Elf) void {
}
}
pub fn allocateAtoms(self: Object, elf_file: *Elf) void {
for (self.atoms.items) |atom_index| {
const atom = elf_file.atom(atom_index) orelse continue;
if (!atom.flags.alive) continue;
const shdr = elf_file.shdrs.items[atom.output_section_index];
atom.value += shdr.sh_addr;
}
for (self.locals()) |local_index| {
const local = elf_file.symbol(local_index);
const atom = local.atom(elf_file) orelse continue;
if (!atom.flags.alive) continue;
local.value += atom.value;
local.output_section_index = atom.output_section_index;
}
for (self.globals()) |global_index| {
const global = elf_file.symbol(global_index);
const atom = global.atom(elf_file) orelse continue;
if (!atom.flags.alive) continue;
if (global.file(elf_file).?.index() != self.index) continue;
global.value += atom.value;
global.output_section_index = atom.output_section_index;
}
}
pub fn updateSymtabSize(self: *Object, elf_file: *Elf) void {
for (self.locals()) |local_index| {
const local = elf_file.symbol(local_index);
@ -664,12 +690,12 @@ pub fn writeSymtab(self: *Object, elf_file: *Elf, ctx: anytype) void {
}
}
pub fn locals(self: *Object) []const Symbol.Index {
pub fn locals(self: Object) []const Symbol.Index {
const end = self.first_global orelse self.symbols.items.len;
return self.symbols.items[0..end];
}
pub fn globals(self: *Object) []const Symbol.Index {
pub fn globals(self: Object) []const Symbol.Index {
const start = self.first_global orelse self.symbols.items.len;
return self.symbols.items[start..];
}