std.heap.WasmAllocator: large allocations

This commit is contained in:
Andrew Kelley 2022-11-10 21:08:29 -07:00
parent 3ea04ed64c
commit 0c0c70ee82

View File

@ -23,15 +23,18 @@ pub const vtable = Allocator.VTable{
pub const Error = Allocator.Error;
const max_usize = math.maxInt(usize);
const ushift = math.Log2Int(usize);
const bigpage_size = 512 * 1024;
const pages_per_bigpage = bigpage_size / wasm.page_size;
const bigpage_count = max_usize / bigpage_size;
//// This has a length of 1024 usizes.
//var bigpages_used = [1]usize{0} ** (bigpage_count / @bitSizeOf(usize));
/// We have a small size class for all sizes up to 512kb.
const size_class_count = math.log2(bigpage_size);
/// 0 - 1 bigpage
/// 1 - 2 bigpages
/// 2 - 4 bigpages
/// etc.
const big_size_class_count = math.log2(bigpage_count);
const FreeList = struct {
/// Each element is the address of a freed pointer.
@ -46,20 +49,26 @@ const FreeList = struct {
};
};
var next_addrs = [1]usize{0} ** size_class_count;
var frees = [1]FreeList{FreeList.init} ** size_class_count;
var bigpage_free_list: FreeList = .{
.ptr = &bigpage_free_buf,
.len = 0,
.cap = bigpage_free_buf.len,
const Bucket = struct {
ptr: usize,
end: usize,
const init: Bucket = .{
.ptr = 0,
.end = 0,
};
};
var bigpage_free_buf: [16]usize = undefined;
var next_addrs = [1]Bucket{Bucket.init} ** size_class_count;
var frees = [1]FreeList{FreeList.init} ** size_class_count;
var big_frees = [1]FreeList{FreeList.init} ** big_size_class_count;
fn alloc(ctx: *anyopaque, len: usize, alignment: u29, len_align: u29, ra: usize) Error![]u8 {
_ = ctx;
_ = len_align;
_ = ra;
const slot_size = math.ceilPowerOfTwoAssert(usize, @max(len, alignment));
const aligned_len = @max(len, alignment);
const slot_size = math.ceilPowerOfTwoAssert(usize, aligned_len);
const class = math.log2(slot_size);
if (class < size_class_count) {
const addr = a: {
@ -69,55 +78,30 @@ fn alloc(ctx: *anyopaque, len: usize, alignment: u29, len_align: u29, ra: usize)
break :a free_list.ptr[free_list.len];
}
// Ensure unused capacity in the corresponding free list.
// This prevents memory allocation within free().
if (free_list.len >= free_list.cap) {
const old_bigpage_count = free_list.cap / bigpage_size;
if (bigpage_free_list.cap - bigpage_free_list.len < old_bigpage_count) {
return error.OutOfMemory;
}
const new_bigpage_count = old_bigpage_count + 1;
const addr = try allocBigPages(new_bigpage_count);
const new_ptr = @intToPtr([*]usize, addr);
const old_ptr = free_list.ptr;
@memcpy(
@ptrCast([*]u8, new_ptr),
@ptrCast([*]u8, old_ptr),
@sizeOf(usize) * free_list.len,
);
free_list.ptr = new_ptr;
free_list.cap = new_bigpage_count * (bigpage_size / @sizeOf(usize));
var i: usize = 0;
while (i < old_bigpage_count) : (i += 1) {
bigpage_free_list.ptr[bigpage_free_list.len] = @ptrToInt(old_ptr) +
i * bigpage_size;
bigpage_free_list.len += 1;
}
}
try ensureFreeListCapacity(free_list);
const next_addr = next_addrs[class];
if (next_addr % bigpage_size == 0) {
//std.debug.print("alloc big page len={d} class={d} slot_size={d}\n", .{
// len, class, slot_size,
//});
if (next_addr.ptr == next_addr.end) {
const addr = try allocBigPages(1);
next_addrs[class] = addr + slot_size;
//std.debug.print("allocated fresh slot_size={d} class={d} addr=0x{x}\n", .{
// slot_size, class, addr,
//});
next_addrs[class] = .{
.ptr = addr + slot_size,
.end = addr + bigpage_size,
};
break :a addr;
} else {
//std.debug.print("easy! len={d} class={d} slot_size={d}\n", .{
// len, class, slot_size,
//});
next_addrs[class] = next_addr + slot_size;
break :a next_addr;
next_addrs[class].ptr = next_addr.ptr + slot_size;
break :a next_addr.ptr;
}
};
return @intToPtr([*]u8, addr)[0..len];
} else {
std.debug.panic("big alloc: len={d} align={d} slot_size={d} class={d}", .{
len, alignment, slot_size, class,
});
}
const bigpages_needed = (aligned_len + (bigpage_size - 1)) / bigpage_size;
const addr = try allocBigPages(bigpages_needed);
return @intToPtr([*]u8, addr)[0..len];
}
fn resize(
@ -145,29 +129,65 @@ fn free(
) void {
_ = ctx;
_ = return_address;
const class_size = @max(buf.len, buf_align);
const class = math.log2(class_size);
const aligned_len = @max(buf.len, buf_align);
const slot_size = math.ceilPowerOfTwoAssert(usize, aligned_len);
const class = math.log2(slot_size);
if (class < size_class_count) {
const free_list = &frees[class];
assert(free_list.len < free_list.cap);
free_list.ptr[free_list.len] = @ptrToInt(buf.ptr);
free_list.len += 1;
} else {
std.debug.panic("big free: len={d} align={d}", .{
buf.len, buf_align,
});
const bigpages_needed = (aligned_len + (bigpage_size - 1)) / bigpage_size;
const big_slot_size = math.ceilPowerOfTwoAssert(usize, bigpages_needed);
const big_class = math.log2(big_slot_size);
const free_list = &big_frees[big_class];
assert(free_list.len < free_list.cap);
free_list.ptr[free_list.len] = @ptrToInt(buf.ptr);
free_list.len += 1;
}
}
inline fn allocBigPages(n: usize) !usize {
if (n == 1 and bigpage_free_list.len > 0) {
bigpage_free_list.len -= 1;
return bigpage_free_list.ptr[bigpage_free_list.len];
fn allocBigPages(n: usize) !usize {
const slot_size = math.ceilPowerOfTwoAssert(usize, n);
const class = math.log2(slot_size);
const free_list = &big_frees[class];
if (free_list.len > 0) {
free_list.len -= 1;
return free_list.ptr[free_list.len];
}
const page_index = @wasmMemoryGrow(0, n * pages_per_bigpage);
if (page_index <= 0)
return error.OutOfMemory;
return @intCast(u32, page_index) * wasm.page_size;
//std.debug.print("ensureFreeListCapacity slot_size={d} big_class={d}\n", .{
// slot_size, class,
//});
// This prevents memory allocation within free().
try ensureFreeListCapacity(free_list);
const page_index = @wasmMemoryGrow(0, slot_size * pages_per_bigpage);
if (page_index <= 0) return error.OutOfMemory;
const addr = @intCast(u32, page_index) * wasm.page_size;
//std.debug.print("got 0x{x}..0x{x} from memory.grow\n", .{
// addr, addr + wasm.page_size * slot_size * pages_per_bigpage,
//});
return addr;
}
fn ensureFreeListCapacity(free_list: *FreeList) Allocator.Error!void {
if (free_list.len < free_list.cap) return;
const old_bigpage_count = free_list.cap / bigpage_size;
free_list.cap = math.maxInt(usize); // Prevent recursive calls.
const new_bigpage_count = @max(old_bigpage_count * 2, 1);
const addr = try allocBigPages(new_bigpage_count);
//std.debug.print("allocated {d} big pages: 0x{x}\n", .{ new_bigpage_count, addr });
const new_ptr = @intToPtr([*]usize, addr);
@memcpy(
@ptrCast([*]u8, new_ptr),
@ptrCast([*]u8, free_list.ptr),
@sizeOf(usize) * free_list.len,
);
free_list.ptr = new_ptr;
free_list.cap = new_bigpage_count * (bigpage_size / @sizeOf(usize));
}
const test_ally = Allocator{
@ -207,16 +227,10 @@ test "small allocations - free in reverse order" {
}
test "large allocations" {
std.debug.print("alloc ptr1\n", .{});
const ptr1 = try test_ally.alloc(u64, 42768);
std.debug.print("alloc ptr2\n", .{});
const ptr2 = try test_ally.alloc(u64, 52768);
std.debug.print("free ptr1\n", .{});
test_ally.free(ptr1);
std.debug.print("alloc ptr3\n", .{});
const ptr3 = try test_ally.alloc(u64, 62768);
std.debug.print("free ptr3\n", .{});
test_ally.free(ptr3);
std.debug.print("free ptr2\n", .{});
test_ally.free(ptr2);
}