diff --git a/doc/langref.html.in b/doc/langref.html.in index 8a303640e6..61fc06fd02 100644 --- a/doc/langref.html.in +++ b/doc/langref.html.in @@ -6542,12 +6542,21 @@ async fn func(y: *i32) void { {#header_close#} {#header_open|@byteSwap#} -
{#syntax#}@byteSwap(comptime T: type, integer: T) T{#endsyntax#}
+
{#syntax#}@byteSwap(comptime T: type, operand: T) T{#endsyntax#}

{#syntax#}T{#endsyntax#} must be an integer type with bit count evenly divisible by 8.

+

{#syntax#}operand{#endsyntax#} may be an {#link|integer|Integers#} or {#link|vector|Vectors#}.

Swaps the byte order of the integer. This converts a big endian integer to a little endian integer, and converts a little endian integer to a big endian integer.

+

+ Note that for the purposes of memory layout with respect to endianness, the integer type should be + related to the number of bytes reported by {#link|@sizeOf#} bytes. This is demonstrated with + {#syntax#}u24{#endsyntax#}. {#syntax#}@sizeOf(u24) == 4{#endsyntax#}, which means that a + {#syntax#}u24{#endsyntax#} stored in memory takes 4 bytes, and those 4 bytes are what are swapped on + a little vs big endian system. On the other hand, if {#syntax#}T{#endsyntax#} is specified to + be {#syntax#}u24{#endsyntax#}, then only 3 bytes are reversed. +

{#header_close#} {#header_open|@bitReverse#} diff --git a/src/all_types.hpp b/src/all_types.hpp index deb56cbb40..7887c06158 100644 --- a/src/all_types.hpp +++ b/src/all_types.hpp @@ -1771,6 +1771,7 @@ struct ZigLLVMFnKey { } overflow_arithmetic; struct { uint32_t bit_count; + uint32_t vector_len; // 0 means not a vector } bswap; struct { uint32_t bit_count; diff --git a/src/analyze.cpp b/src/analyze.cpp index ac70d5646f..66b72b935d 100644 --- a/src/analyze.cpp +++ b/src/analyze.cpp @@ -6896,7 +6896,8 @@ uint32_t zig_llvm_fn_key_hash(ZigLLVMFnKey x) { return (uint32_t)(x.data.floating.bit_count) * ((uint32_t)x.id + 1025) + (uint32_t)(x.data.floating.vector_len) * (((uint32_t)x.id << 5) + 1025); case ZigLLVMFnIdBswap: - return (uint32_t)(x.data.bswap.bit_count) * (uint32_t)3661994335; + return (uint32_t)(x.data.bswap.bit_count) * ((uint32_t)3661994335) + + (uint32_t)(x.data.bswap.vector_len) * (((uint32_t)x.id << 5) + 1025); case ZigLLVMFnIdBitReverse: return (uint32_t)(x.data.bit_reverse.bit_count) * (uint32_t)2621398431; case ZigLLVMFnIdOverflowArithmetic: @@ -6919,7 +6920,8 @@ bool zig_llvm_fn_key_eql(ZigLLVMFnKey a, ZigLLVMFnKey b) { case ZigLLVMFnIdPopCount: return a.data.pop_count.bit_count == b.data.pop_count.bit_count; case ZigLLVMFnIdBswap: - return a.data.bswap.bit_count == b.data.bswap.bit_count; + return a.data.bswap.bit_count == b.data.bswap.bit_count && + a.data.bswap.vector_len == b.data.bswap.vector_len; case ZigLLVMFnIdBitReverse: return a.data.bit_reverse.bit_count == b.data.bit_reverse.bit_count; case ZigLLVMFnIdFloatOp: diff --git a/src/codegen.cpp b/src/codegen.cpp index 7676b3bbd0..54c02b288a 100644 --- a/src/codegen.cpp +++ b/src/codegen.cpp @@ -4505,7 +4505,11 @@ static LLVMValueRef ir_render_optional_unwrap_ptr(CodeGen *g, IrExecutable *exec } } -static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *int_type, BuiltinFnId fn_id) { +static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *expr_type, BuiltinFnId fn_id) { + bool is_vector = expr_type->id == ZigTypeIdVector; + ZigType *int_type = is_vector ? expr_type->data.vector.elem_type : expr_type; + assert(int_type->id == ZigTypeIdInt); + uint32_t vector_len = is_vector ? expr_type->data.vector.len : 0; ZigLLVMFnKey key = {}; const char *fn_name; uint32_t n_args; @@ -4529,6 +4533,7 @@ static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *int_type, BuiltinFnI n_args = 1; key.id = ZigLLVMFnIdBswap; key.data.bswap.bit_count = (uint32_t)int_type->data.integral.bit_count; + key.data.bswap.vector_len = vector_len; } else if (fn_id == BuiltinFnIdBitReverse) { fn_name = "bitreverse"; n_args = 1; @@ -4543,12 +4548,15 @@ static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *int_type, BuiltinFnI return existing_entry->value; char llvm_name[64]; - sprintf(llvm_name, "llvm.%s.i%" PRIu32, fn_name, int_type->data.integral.bit_count); + if (is_vector) + sprintf(llvm_name, "llvm.%s.v%" PRIu32 "i%" PRIu32, fn_name, vector_len, int_type->data.integral.bit_count); + else + sprintf(llvm_name, "llvm.%s.i%" PRIu32, fn_name, int_type->data.integral.bit_count); LLVMTypeRef param_types[] = { - get_llvm_type(g, int_type), + get_llvm_type(g, expr_type), LLVMInt1Type(), }; - LLVMTypeRef fn_type = LLVMFunctionType(get_llvm_type(g, int_type), param_types, n_args, false); + LLVMTypeRef fn_type = LLVMFunctionType(get_llvm_type(g, expr_type), param_types, n_args, false); LLVMValueRef fn_val = LLVMAddFunction(g->module, llvm_name, fn_type); assert(LLVMGetIntrinsicID(fn_val)); @@ -5542,25 +5550,36 @@ static LLVMValueRef ir_render_mul_add(CodeGen *g, IrExecutable *executable, IrIn static LLVMValueRef ir_render_bswap(CodeGen *g, IrExecutable *executable, IrInstructionBswap *instruction) { LLVMValueRef op = ir_llvm_value(g, instruction->op); - ZigType *int_type = instruction->base.value.type; + ZigType *expr_type = instruction->base.value.type; + bool is_vector = expr_type->id == ZigTypeIdVector; + ZigType *int_type = is_vector ? expr_type->data.vector.elem_type : expr_type; assert(int_type->id == ZigTypeIdInt); if (int_type->data.integral.bit_count % 16 == 0) { - LLVMValueRef fn_val = get_int_builtin_fn(g, instruction->base.value.type, BuiltinFnIdBswap); + LLVMValueRef fn_val = get_int_builtin_fn(g, expr_type, BuiltinFnIdBswap); return LLVMBuildCall(g->builder, fn_val, &op, 1, ""); } // Not an even number of bytes, so we zext 1 byte, then bswap, shift right 1 byte, truncate ZigType *extended_type = get_int_type(g, int_type->data.integral.is_signed, int_type->data.integral.bit_count + 8); + LLVMValueRef shift_amt = LLVMConstInt(get_llvm_type(g, extended_type), 8, false); + if (is_vector) { + extended_type = get_vector_type(g, expr_type->data.vector.len, extended_type); + LLVMValueRef *values = allocate_nonzero(expr_type->data.vector.len); + for (uint32_t i = 0; i < expr_type->data.vector.len; i += 1) { + values[i] = shift_amt; + } + shift_amt = LLVMConstVector(values, expr_type->data.vector.len); + free(values); + } // aabbcc LLVMValueRef extended = LLVMBuildZExt(g->builder, op, get_llvm_type(g, extended_type), ""); // 00aabbcc LLVMValueRef fn_val = get_int_builtin_fn(g, extended_type, BuiltinFnIdBswap); LLVMValueRef swapped = LLVMBuildCall(g->builder, fn_val, &extended, 1, ""); // ccbbaa00 - LLVMValueRef shifted = ZigLLVMBuildLShrExact(g->builder, swapped, - LLVMConstInt(get_llvm_type(g, extended_type), 8, false), ""); + LLVMValueRef shifted = ZigLLVMBuildLShrExact(g->builder, swapped, shift_amt, ""); // 00ccbbaa - return LLVMBuildTrunc(g->builder, shifted, get_llvm_type(g, int_type), ""); + return LLVMBuildTrunc(g->builder, shifted, get_llvm_type(g, expr_type), ""); } static LLVMValueRef ir_render_bit_reverse(CodeGen *g, IrExecutable *executable, IrInstructionBitReverse *instruction) { @@ -5581,7 +5600,7 @@ static LLVMValueRef ir_render_vector_to_array(CodeGen *g, IrExecutable *executab LLVMValueRef vector = ir_llvm_value(g, instruction->vector); ZigType *elem_type = array_type->data.array.child_type; - bool bitcast_ok = (elem_type->size_in_bits * 8) == elem_type->abi_size; + bool bitcast_ok = elem_type->size_in_bits == elem_type->abi_size * 8; if (bitcast_ok) { LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, result_loc, LLVMPointerType(get_llvm_type(g, instruction->vector->value.type), 0), ""); @@ -5615,7 +5634,7 @@ static LLVMValueRef ir_render_array_to_vector(CodeGen *g, IrExecutable *executab LLVMTypeRef vector_type_ref = get_llvm_type(g, vector_type); ZigType *elem_type = vector_type->data.vector.elem_type; - bool bitcast_ok = (elem_type->size_in_bits * 8) == elem_type->abi_size; + bool bitcast_ok = elem_type->size_in_bits == elem_type->abi_size * 8; if (bitcast_ok) { LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, array_ptr, LLVMPointerType(vector_type_ref, 0), ""); @@ -8888,7 +8907,7 @@ void add_cc_args(CodeGen *g, ZigList &args, const char *out_dep_pa args.append(g->framework_dirs.at(i)); } - //note(dimenus): appending libc headers before c_headers breaks intrinsics + //note(dimenus): appending libc headers before c_headers breaks intrinsics //and other compiler specific items // According to Rich Felker libc headers are supposed to go before C language headers. args.append("-isystem"); diff --git a/src/ir.cpp b/src/ir.cpp index cbc00f0cfe..1eba53ef45 100644 --- a/src/ir.cpp +++ b/src/ir.cpp @@ -11068,8 +11068,15 @@ static ZigType *ir_resolve_int_type(IrAnalyze *ira, IrInstruction *type_value) { return ira->codegen->builtin_types.entry_invalid; if (ty->id != ZigTypeIdInt) { - ir_add_error(ira, type_value, + ErrorMsg *msg = ir_add_error(ira, type_value, buf_sprintf("expected integer type, found '%s'", buf_ptr(&ty->name))); + if (ty->id == ZigTypeIdVector && + ty->data.vector.elem_type->id == ZigTypeIdInt) + { + add_error_note(ira->codegen, msg, type_value->source_node, + buf_sprintf("represent vectors with their element types, i.e. '%s'", + buf_ptr(&ty->data.vector.elem_type->name))); + } return ira->codegen->builtin_types.entry_invalid; } @@ -25253,21 +25260,35 @@ static IrInstruction *ir_analyze_instruction_float_op(IrAnalyze *ira, IrInstruct } static IrInstruction *ir_analyze_instruction_bswap(IrAnalyze *ira, IrInstructionBswap *instruction) { + Error err; + ZigType *int_type = ir_resolve_int_type(ira, instruction->type->child); if (type_is_invalid(int_type)) return ira->codegen->invalid_instruction; - IrInstruction *op = ir_implicit_cast(ira, instruction->op->child, int_type); + IrInstruction *uncasted_op = instruction->op->child; + if (type_is_invalid(uncasted_op->value.type)) + return ira->codegen->invalid_instruction; + + uint32_t vector_len; // UINT32_MAX means not a vector + if (uncasted_op->value.type->id == ZigTypeIdArray && + is_valid_vector_elem_type(uncasted_op->value.type->data.array.child_type)) + { + vector_len = uncasted_op->value.type->data.array.len; + } else if (uncasted_op->value.type->id == ZigTypeIdVector) { + vector_len = uncasted_op->value.type->data.vector.len; + } else { + vector_len = UINT32_MAX; + } + + bool is_vector = (vector_len != UINT32_MAX); + ZigType *op_type = is_vector ? get_vector_type(ira->codegen, vector_len, int_type) : int_type; + + IrInstruction *op = ir_implicit_cast(ira, uncasted_op, op_type); if (type_is_invalid(op->value.type)) return ira->codegen->invalid_instruction; - if (int_type->data.integral.bit_count == 0) { - IrInstruction *result = ir_const(ira, &instruction->base, int_type); - bigint_init_unsigned(&result->value.data.x_bigint, 0); - return result; - } - - if (int_type->data.integral.bit_count == 8) + if (int_type->data.integral.bit_count == 8 || int_type->data.integral.bit_count == 0) return op; if (int_type->data.integral.bit_count % 8 != 0) { @@ -25282,20 +25303,44 @@ static IrInstruction *ir_analyze_instruction_bswap(IrAnalyze *ira, IrInstruction if (val == nullptr) return ira->codegen->invalid_instruction; if (val->special == ConstValSpecialUndef) - return ir_const_undef(ira, &instruction->base, int_type); + return ir_const_undef(ira, &instruction->base, op_type); - IrInstruction *result = ir_const(ira, &instruction->base, int_type); + IrInstruction *result = ir_const(ira, &instruction->base, op_type); size_t buf_size = int_type->data.integral.bit_count / 8; uint8_t *buf = allocate_nonzero(buf_size); - bigint_write_twos_complement(&val->data.x_bigint, buf, int_type->data.integral.bit_count, true); - bigint_read_twos_complement(&result->value.data.x_bigint, buf, int_type->data.integral.bit_count, false, - int_type->data.integral.is_signed); + if (is_vector) { + expand_undef_array(ira->codegen, val); + result->value.data.x_array.data.s_none.elements = create_const_vals(op_type->data.vector.len); + for (unsigned i = 0; i < op_type->data.vector.len; i += 1) { + ConstExprValue *op_elem_val = &val->data.x_array.data.s_none.elements[i]; + if ((err = ir_resolve_const_val(ira->codegen, ira->new_irb.exec, instruction->base.source_node, + op_elem_val, UndefOk))) + { + return ira->codegen->invalid_instruction; + } + ConstExprValue *result_elem_val = &result->value.data.x_array.data.s_none.elements[i]; + result_elem_val->type = int_type; + result_elem_val->special = op_elem_val->special; + if (op_elem_val->special == ConstValSpecialUndef) + continue; + + bigint_write_twos_complement(&op_elem_val->data.x_bigint, buf, int_type->data.integral.bit_count, true); + bigint_read_twos_complement(&result->value.data.x_array.data.s_none.elements[i].data.x_bigint, + buf, int_type->data.integral.bit_count, false, + int_type->data.integral.is_signed); + } + } else { + bigint_write_twos_complement(&val->data.x_bigint, buf, int_type->data.integral.bit_count, true); + bigint_read_twos_complement(&result->value.data.x_bigint, buf, int_type->data.integral.bit_count, false, + int_type->data.integral.is_signed); + } + free(buf); return result; } IrInstruction *result = ir_build_bswap(&ira->new_irb, instruction->base.scope, instruction->base.source_node, nullptr, op); - result->value.type = int_type; + result->value.type = op_type; return result; } diff --git a/test/stage1/behavior/byteswap.zig b/test/stage1/behavior/byteswap.zig index 3e7c34cb85..d8fc554808 100644 --- a/test/stage1/behavior/byteswap.zig +++ b/test/stage1/behavior/byteswap.zig @@ -1,32 +1,62 @@ const std = @import("std"); const expect = std.testing.expect; -test "@byteSwap" { - comptime testByteSwap(); - testByteSwap(); +test "@byteSwap integers" { + const ByteSwapIntTest = struct { + fn run() void { + t(u0, 0, 0); + t(u8, 0x12, 0x12); + t(u16, 0x1234, 0x3412); + t(u24, 0x123456, 0x563412); + t(u32, 0x12345678, 0x78563412); + t(u40, 0x123456789a, 0x9a78563412); + t(i48, 0x123456789abc, @bitCast(i48, u48(0xbc9a78563412))); + t(u56, 0x123456789abcde, 0xdebc9a78563412); + t(u64, 0x123456789abcdef1, 0xf1debc9a78563412); + t(u128, 0x123456789abcdef11121314151617181, 0x8171615141312111f1debc9a78563412); + + t(u0, u0(0), 0); + t(i8, i8(-50), -50); + t(i16, @bitCast(i16, u16(0x1234)), @bitCast(i16, u16(0x3412))); + t(i24, @bitCast(i24, u24(0x123456)), @bitCast(i24, u24(0x563412))); + t(i32, @bitCast(i32, u32(0x12345678)), @bitCast(i32, u32(0x78563412))); + t(u40, @bitCast(i40, u40(0x123456789a)), u40(0x9a78563412)); + t(i48, @bitCast(i48, u48(0x123456789abc)), @bitCast(i48, u48(0xbc9a78563412))); + t(i56, @bitCast(i56, u56(0x123456789abcde)), @bitCast(i56, u56(0xdebc9a78563412))); + t(i64, @bitCast(i64, u64(0x123456789abcdef1)), @bitCast(i64, u64(0xf1debc9a78563412))); + t( + i128, + @bitCast(i128, u128(0x123456789abcdef11121314151617181)), + @bitCast(i128, u128(0x8171615141312111f1debc9a78563412)), + ); + } + fn t(comptime I: type, input: I, expected_output: I) void { + std.testing.expectEqual(expected_output, @byteSwap(I, input)); + } + }; + comptime ByteSwapIntTest.run(); + ByteSwapIntTest.run(); } -fn testByteSwap() void { - expect(@byteSwap(u0, 0) == 0); - expect(@byteSwap(u8, 0x12) == 0x12); - expect(@byteSwap(u16, 0x1234) == 0x3412); - expect(@byteSwap(u24, 0x123456) == 0x563412); - expect(@byteSwap(u32, 0x12345678) == 0x78563412); - expect(@byteSwap(u40, 0x123456789a) == 0x9a78563412); - expect(@byteSwap(i48, 0x123456789abc) == @bitCast(i48, u48(0xbc9a78563412))); - expect(@byteSwap(u56, 0x123456789abcde) == 0xdebc9a78563412); - expect(@byteSwap(u64, 0x123456789abcdef1) == 0xf1debc9a78563412); - expect(@byteSwap(u128, 0x123456789abcdef11121314151617181) == 0x8171615141312111f1debc9a78563412); +test "@byteSwap vectors" { + const ByteSwapVectorTest = struct { + fn run() void { + t(u8, 2, [_]u8{ 0x12, 0x13 }, [_]u8{ 0x12, 0x13 }); + t(u16, 2, [_]u16{ 0x1234, 0x2345 }, [_]u16{ 0x3412, 0x4523 }); + t(u24, 2, [_]u24{ 0x123456, 0x234567 }, [_]u24{ 0x563412, 0x674523 }); + } - expect(@byteSwap(u0, u0(0)) == 0); - expect(@byteSwap(i8, i8(-50)) == -50); - expect(@byteSwap(i16, @bitCast(i16, u16(0x1234))) == @bitCast(i16, u16(0x3412))); - expect(@byteSwap(i24, @bitCast(i24, u24(0x123456))) == @bitCast(i24, u24(0x563412))); - expect(@byteSwap(i32, @bitCast(i32, u32(0x12345678))) == @bitCast(i32, u32(0x78563412))); - expect(@byteSwap(u40, @bitCast(i40, u40(0x123456789a))) == u40(0x9a78563412)); - expect(@byteSwap(i48, @bitCast(i48, u48(0x123456789abc))) == @bitCast(i48, u48(0xbc9a78563412))); - expect(@byteSwap(i56, @bitCast(i56, u56(0x123456789abcde))) == @bitCast(i56, u56(0xdebc9a78563412))); - expect(@byteSwap(i64, @bitCast(i64, u64(0x123456789abcdef1))) == @bitCast(i64, u64(0xf1debc9a78563412))); - expect(@byteSwap(i128, @bitCast(i128, u128(0x123456789abcdef11121314151617181))) == - @bitCast(i128, u128(0x8171615141312111f1debc9a78563412))); + fn t( + comptime I: type, + comptime n: comptime_int, + input: @Vector(n, I), + expected_vector: @Vector(n, I), + ) void { + const actual_output: [n]I = @byteSwap(I, input); + const expected_output: [n]I = expected_vector; + std.testing.expectEqual(expected_output, actual_output); + } + }; + comptime ByteSwapVectorTest.run(); + ByteSwapVectorTest.run(); }