const std = @import("std"); const rl = @import("raylib"); const rlgl = rl.gl; pub fn main() anyerror!void { const screenWidth: i32 = 800; const screenHeight: i32 = 450; const sunRadius = 4.0; const earthRadius = 0.6; const earthOrbitRadius = 8.0; const moonRadius = 0.16; const moonOrbitRadius = 1.5; rl.initWindow(screenWidth, screenHeight, "raylib [models] example - rlgl solar system"); // Define the camera to look into our 3d world var camera: rl.Camera = std.mem.zeroes(rl.Camera); camera.position = .{ .x = 16.0, .y = 16.0, .z = 16.0 }; // Camera position camera.target = .{ .x = 0.0, .y = 0.0, .z = 0.0 }; // Camera looking at point camera.up = .{ .x = 0.0, .y = 1.0, .z = 0.0 }; // Camera up vector (rotation towards target) camera.fovy = 45.0; // Camera field-of-view Y camera.projection = .perspective; // Camera projection type const rotationSpeed: f32 = 0.2; // General system rotation speed var earthRotation: f32 = 0.0; // Rotation of earth around itself (days) in degrees var earthOrbitRotation: f32 = 0.0; // Rotation of earth around the Sun (years) in degrees var moonRotation: f32 = 0.0; // Rotation of moon around itself var moonOrbitRotation: f32 = 0.0; // Rotation of moon around earth in degrees // De-Initialization //-------------------------------------------------------------------------------------- defer rl.closeWindow(); // Close window and OpenGL context //-------------------------------------------------------------------------------------- rl.setTargetFPS(60); // Set our game to run at 60 frames-per-second while (!rl.windowShouldClose()) { // Update //---------------------------------------------------------------------------------- rl.updateCamera(&camera, .orbital); earthRotation += (5.0 * rotationSpeed); earthOrbitRotation += (365.0 / 360.0 * (5.0 * rotationSpeed) * rotationSpeed); moonRotation += (2.0 * rotationSpeed); moonOrbitRotation += (8.0 * rotationSpeed); //---------------------------------------------------------------------------------- // Draw //---------------------------------------------------------------------------------- rl.beginDrawing(); defer rl.endDrawing(); rl.clearBackground(.ray_white); { rl.beginMode3D(camera); defer rl.endMode3D(); rlgl.rlPushMatrix(); rlgl.rlScalef(sunRadius, sunRadius, sunRadius); // Scale Sun drawSphereBasic(.gold); // Draw the Sun rlgl.rlPopMatrix(); rlgl.rlPushMatrix(); rlgl.rlRotatef(earthOrbitRotation, 0.0, 1.0, 0.0); // Rotation for Earth orbit around Sun rlgl.rlTranslatef(earthOrbitRadius, 0.0, 0.0); // Translation for Earth orbit rlgl.rlPushMatrix(); rlgl.rlRotatef(earthRotation, 0.25, 1.0, 0.0); // Rotation for Earth itself rlgl.rlScalef(earthRadius, earthRadius, earthRadius); // Scale Earth drawSphereBasic(.blue); // Draw the Earth rlgl.rlPopMatrix(); rlgl.rlRotatef(moonOrbitRotation, 0.0, 1.0, 0.0); // Rotation for Moon orbit around Earth rlgl.rlTranslatef(moonOrbitRadius, 0.0, 0.0); // Translation for Moon orbit rlgl.rlRotatef(moonRotation, 0.0, 1.0, 0.0); // Rotation for Moon itself rlgl.rlScalef(moonRadius, moonRadius, moonRadius); // Scale Moon drawSphereBasic(.light_gray); // Draw the Moon rlgl.rlPopMatrix(); // Some reference elements (not affected by previous matrix transformations) rl.drawCircle3D(.{ .x = 0.0, .y = 0.0, .z = 0.0 }, earthOrbitRadius, .{ .x = 1, .y = 0, .z = 0 }, 90.0, rl.fade(.red, 0.5)); rl.drawGrid(20, 1.0); } rl.drawText("EARTH ORBITING AROUND THE SUN!", 400, 10, 20, .maroon); rl.drawFPS(10, 10); //---------------------------------------------------------------------------------- } } //-------------------------------------------------------------------------------------------- // Module Functions Definition //-------------------------------------------------------------------------------------------- // Draw sphere without any matrix transformation // NOTE: Sphere is drawn in world position ( 0, 0, 0 ) with radius 1.0f fn drawSphereBasic(color: rl.Color) void { const rings: usize = 16; const slices: usize = 16; const floatRings: f32 = @floatFromInt(rings); const floatSlices: f32 = @floatFromInt(slices); // Make sure there is enough space in the internal render batch // buffer to store all required vertex, batch is reseted if required _ = rlgl.rlCheckRenderBatchLimit((rings + 2) * slices * 6); rlgl.rlBegin(rlgl.rl_triangles); rlgl.rlColor4ub(color.r, color.g, color.b, color.a); for (0..(rings + 2)) |i| { const floatI: f32 = @floatFromInt(i); for (0..slices) |j| { const floatJ: f32 = @floatFromInt(j); rlgl.rlVertex3f( std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * floatI)) * std.math.sin(std.math.rad_per_deg * (floatJ * 360 / floatSlices)), std.math.sin(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * floatI)), std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * floatI)) * std.math.cos(std.math.rad_per_deg * (floatJ * 360 / floatSlices)), ); rlgl.rlVertex3f( std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))) * std.math.sin(std.math.rad_per_deg * ((floatJ + 1.0) * 360 / floatSlices)), std.math.sin(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))), std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))) * std.math.cos(std.math.rad_per_deg * ((floatJ + 1.0) * 360 / floatSlices)), ); rlgl.rlVertex3f( std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))) * std.math.sin(std.math.rad_per_deg * (floatJ * 360 / floatSlices)), std.math.sin(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))), std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))) * std.math.cos(std.math.rad_per_deg * (floatJ * 360 / floatSlices)), ); rlgl.rlVertex3f( std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * floatI)) * std.math.sin(std.math.rad_per_deg * (floatJ * 360 / floatSlices)), std.math.sin(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * floatI)), std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * floatI)) * std.math.cos(std.math.rad_per_deg * (floatJ * 360 / floatSlices)), ); rlgl.rlVertex3f( std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI))) * std.math.sin(std.math.rad_per_deg * ((floatJ + 1.0) * 360 / floatSlices)), std.math.sin(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI))), std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI))) * std.math.cos(std.math.rad_per_deg * ((floatJ + 1.0) * 360 / floatSlices)), ); rlgl.rlVertex3f( std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))) * std.math.sin(std.math.rad_per_deg * ((floatJ + 1.0) * 360 / floatSlices)), std.math.sin(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))), std.math.cos(std.math.rad_per_deg * (270.0 + (180.0 / (floatRings + 1.0)) * (floatI + 1.0))) * std.math.cos(std.math.rad_per_deg * ((floatJ + 1.0) * 360 / floatSlices)), ); } } rlgl.rlEnd(); }