End of tuto
This commit is contained in:
commit
1f5e37de40
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
.zig-cache
|
||||
zig-out
|
||||
*.png
|
||||
*.ppm
|
66
build.zig
Normal file
66
build.zig
Normal file
@ -0,0 +1,66 @@
|
||||
const std = @import("std");
|
||||
|
||||
// Although this function looks imperative, note that its job is to
|
||||
// declaratively construct a build graph that will be executed by an external
|
||||
// runner.
|
||||
pub fn build(b: *std.Build) void {
|
||||
// Standard target options allows the person running `zig build` to choose
|
||||
// what target to build for. Here we do not override the defaults, which
|
||||
// means any target is allowed, and the default is native. Other options
|
||||
// for restricting supported target set are available.
|
||||
const target = b.standardTargetOptions(.{});
|
||||
|
||||
// Standard optimization options allow the person running `zig build` to select
|
||||
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
|
||||
// set a preferred release mode, allowing the user to decide how to optimize.
|
||||
const optimize = b.standardOptimizeOption(.{});
|
||||
|
||||
const exe = b.addExecutable(.{
|
||||
.name = "thermal",
|
||||
.root_source_file = b.path("src/main.zig"),
|
||||
.target = target,
|
||||
.optimize = optimize,
|
||||
});
|
||||
|
||||
// This declares intent for the executable to be installed into the
|
||||
// standard location when the user invokes the "install" step (the default
|
||||
// step when running `zig build`).
|
||||
b.installArtifact(exe);
|
||||
|
||||
// This *creates* a Run step in the build graph, to be executed when another
|
||||
// step is evaluated that depends on it. The next line below will establish
|
||||
// such a dependency.
|
||||
const run_cmd = b.addRunArtifact(exe);
|
||||
|
||||
// By making the run step depend on the install step, it will be run from the
|
||||
// installation directory rather than directly from within the cache directory.
|
||||
// This is not necessary, however, if the application depends on other installed
|
||||
// files, this ensures they will be present and in the expected location.
|
||||
run_cmd.step.dependOn(b.getInstallStep());
|
||||
|
||||
// This allows the user to pass arguments to the application in the build
|
||||
// command itself, like this: `zig build run -- arg1 arg2 etc`
|
||||
if (b.args) |args| {
|
||||
run_cmd.addArgs(args);
|
||||
}
|
||||
|
||||
// This creates a build step. It will be visible in the `zig build --help` menu,
|
||||
// and can be selected like this: `zig build run`
|
||||
// This will evaluate the `run` step rather than the default, which is "install".
|
||||
const run_step = b.step("run", "Run the app");
|
||||
run_step.dependOn(&run_cmd.step);
|
||||
|
||||
const exe_unit_tests = b.addTest(.{
|
||||
.root_source_file = b.path("src/main.zig"),
|
||||
.target = target,
|
||||
.optimize = optimize,
|
||||
});
|
||||
|
||||
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
|
||||
|
||||
// Similar to creating the run step earlier, this exposes a `test` step to
|
||||
// the `zig build --help` menu, providing a way for the user to request
|
||||
// running the unit tests.
|
||||
const test_step = b.step("test", "Run unit tests");
|
||||
test_step.dependOn(&run_exe_unit_tests.step);
|
||||
}
|
72
build.zig.zon
Normal file
72
build.zig.zon
Normal file
@ -0,0 +1,72 @@
|
||||
.{
|
||||
// This is the default name used by packages depending on this one. For
|
||||
// example, when a user runs `zig fetch --save <url>`, this field is used
|
||||
// as the key in the `dependencies` table. Although the user can choose a
|
||||
// different name, most users will stick with this provided value.
|
||||
//
|
||||
// It is redundant to include "zig" in this name because it is already
|
||||
// within the Zig package namespace.
|
||||
.name = "thermal",
|
||||
|
||||
// This is a [Semantic Version](https://semver.org/).
|
||||
// In a future version of Zig it will be used for package deduplication.
|
||||
.version = "0.0.0",
|
||||
|
||||
// This field is optional.
|
||||
// This is currently advisory only; Zig does not yet do anything
|
||||
// with this value.
|
||||
//.minimum_zig_version = "0.11.0",
|
||||
|
||||
// This field is optional.
|
||||
// Each dependency must either provide a `url` and `hash`, or a `path`.
|
||||
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
|
||||
// Once all dependencies are fetched, `zig build` no longer requires
|
||||
// internet connectivity.
|
||||
.dependencies = .{
|
||||
// See `zig fetch --save <url>` for a command-line interface for adding dependencies.
|
||||
//.example = .{
|
||||
// // When updating this field to a new URL, be sure to delete the corresponding
|
||||
// // `hash`, otherwise you are communicating that you expect to find the old hash at
|
||||
// // the new URL.
|
||||
// .url = "https://example.com/foo.tar.gz",
|
||||
//
|
||||
// // This is computed from the file contents of the directory of files that is
|
||||
// // obtained after fetching `url` and applying the inclusion rules given by
|
||||
// // `paths`.
|
||||
// //
|
||||
// // This field is the source of truth; packages do not come from a `url`; they
|
||||
// // come from a `hash`. `url` is just one of many possible mirrors for how to
|
||||
// // obtain a package matching this `hash`.
|
||||
// //
|
||||
// // Uses the [multihash](https://multiformats.io/multihash/) format.
|
||||
// .hash = "...",
|
||||
//
|
||||
// // When this is provided, the package is found in a directory relative to the
|
||||
// // build root. In this case the package's hash is irrelevant and therefore not
|
||||
// // computed. This field and `url` are mutually exclusive.
|
||||
// .path = "foo",
|
||||
|
||||
// // When this is set to `true`, a package is declared to be lazily
|
||||
// // fetched. This makes the dependency only get fetched if it is
|
||||
// // actually used.
|
||||
// .lazy = false,
|
||||
//},
|
||||
},
|
||||
|
||||
// Specifies the set of files and directories that are included in this package.
|
||||
// Only files and directories listed here are included in the `hash` that
|
||||
// is computed for this package. Only files listed here will remain on disk
|
||||
// when using the zig package manager. As a rule of thumb, one should list
|
||||
// files required for compilation plus any license(s).
|
||||
// Paths are relative to the build root. Use the empty string (`""`) to refer to
|
||||
// the build root itself.
|
||||
// A directory listed here means that all files within, recursively, are included.
|
||||
.paths = .{
|
||||
"build.zig",
|
||||
"build.zig.zon",
|
||||
"src",
|
||||
// For example...
|
||||
//"LICENSE",
|
||||
//"README.md",
|
||||
},
|
||||
}
|
223
src/camera.zig
Normal file
223
src/camera.zig
Normal file
@ -0,0 +1,223 @@
|
||||
const std = @import("std");
|
||||
const print = std.debug.print;
|
||||
const math = std.math;
|
||||
const vec3 = @Vector(3, f64);
|
||||
const Ray = @import("hittable.zig").Ray;
|
||||
|
||||
const utils = @import("utils.zig");
|
||||
const toVec3 = utils.toVec3;
|
||||
const Interval = utils.Interval;
|
||||
|
||||
const hit = @import("hittable.zig");
|
||||
const HittableList = hit.HittableList;
|
||||
const HitRecord = hit.HitRecord;
|
||||
|
||||
const mat_math = @import("mat_math.zig");
|
||||
const unit_vector = mat_math.unit_vector;
|
||||
const length = mat_math.length;
|
||||
const cross = mat_math.cross;
|
||||
|
||||
pub const Camera = struct {
|
||||
aspect_ratio: f64,
|
||||
image_width: i64,
|
||||
samples_per_pixel: i64,
|
||||
max_depth: i64,
|
||||
vfov: f64,
|
||||
defocus_angle: f64,
|
||||
focus_dist: f64,
|
||||
|
||||
image_height: i64,
|
||||
center: vec3,
|
||||
pixel_samples_scale: f64,
|
||||
pixel00_loc: vec3,
|
||||
pixel_delta_u: vec3,
|
||||
pixel_delta_v: vec3,
|
||||
defocus_disk_u: vec3,
|
||||
defocus_disk_v: vec3,
|
||||
|
||||
u: vec3,
|
||||
v: vec3,
|
||||
w: vec3,
|
||||
|
||||
pub fn new() Camera {
|
||||
const aspect_ratio: f64 = 16.0 / 9.0;
|
||||
const image_width: i64 = 512; // Possible 128, 256, 512, 1024, 1280, 1920, 2560, 3840, 7680
|
||||
const samples_per_pixel = 50;
|
||||
const max_depth = 10;
|
||||
const vfov = 20;
|
||||
const lookfrom = vec3{ 13, 2, 3 };
|
||||
const lookat = vec3{ 0, 0, 0 };
|
||||
const vup = vec3{ 0, 1, 0 };
|
||||
|
||||
const defocus_angle = 0.6;
|
||||
const focus_dist = 10;
|
||||
|
||||
const camera_center = lookfrom;
|
||||
const image_height: i64 = image_width / aspect_ratio;
|
||||
const pixel_samples_scale = 1.0 / @as(f64, @floatFromInt(samples_per_pixel));
|
||||
|
||||
// Camera
|
||||
const theta = utils.degrees_to_radians(vfov);
|
||||
const h = @tan(theta / 2);
|
||||
|
||||
const viewport_height: f64 = 2.0 * h * focus_dist;
|
||||
const viewport_width: f64 = viewport_height * aspect_ratio;
|
||||
|
||||
const w = unit_vector(lookfrom - lookat);
|
||||
const u = unit_vector(cross(vup, w));
|
||||
const v = cross(w, u);
|
||||
|
||||
const viewport_u = toVec3(viewport_width) * u;
|
||||
const viewport_v = toVec3(viewport_height) * -v;
|
||||
|
||||
const pixel_delta_u = viewport_u / toVec3(image_width);
|
||||
const pixel_delta_v = viewport_v / toVec3(image_height);
|
||||
|
||||
const viewport_upper_left = camera_center - toVec3(focus_dist) * w - viewport_u / toVec3(2) - viewport_v / toVec3(2);
|
||||
const pixel00_loc = viewport_upper_left + toVec3(0.5) * (pixel_delta_u + pixel_delta_v);
|
||||
|
||||
const defocus_radius = focus_dist * @tan(utils.degrees_to_radians(defocus_angle / 2));
|
||||
const defocus_disk_u = u * toVec3(defocus_radius);
|
||||
const defocus_disk_v = v * toVec3(defocus_radius);
|
||||
|
||||
return Camera{
|
||||
.aspect_ratio = aspect_ratio,
|
||||
.image_width = image_width,
|
||||
.samples_per_pixel = samples_per_pixel,
|
||||
.max_depth = max_depth,
|
||||
.vfov = vfov,
|
||||
.focus_dist = focus_dist,
|
||||
.defocus_angle = defocus_angle,
|
||||
|
||||
.u = u,
|
||||
.v = v,
|
||||
.w = w,
|
||||
|
||||
.defocus_disk_v = defocus_disk_v,
|
||||
.defocus_disk_u = defocus_disk_u,
|
||||
.image_height = image_height,
|
||||
.center = camera_center,
|
||||
.pixel_samples_scale = pixel_samples_scale,
|
||||
.pixel00_loc = pixel00_loc,
|
||||
.pixel_delta_u = pixel_delta_u,
|
||||
.pixel_delta_v = pixel_delta_v,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn render(self: Camera, world: HittableList, writer: anytype) !void {
|
||||
// Write the PPM header
|
||||
try writer.print("P3\n{} {}\n255\n", .{ self.image_width, self.image_height });
|
||||
|
||||
// Write the pixel data
|
||||
for (0..@as(usize, @intCast(self.image_height))) |i| {
|
||||
const h = @as(i64, @intCast(i));
|
||||
pbar(h, self.image_height);
|
||||
for (0..@as(usize, @intCast(self.image_width))) |j| {
|
||||
const w = @as(i64, @intCast(j));
|
||||
|
||||
var pixel_color = vec3{ 0, 0, 0 };
|
||||
for (0..@as(usize, @intCast(self.samples_per_pixel))) |_| {
|
||||
const r = self.get_ray(h, w);
|
||||
pixel_color += ray_color(r, self.max_depth, world);
|
||||
}
|
||||
|
||||
try writeColor(pixel_color * toVec3(self.pixel_samples_scale), writer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn get_ray(self: Camera, h: i64, w: i64) Ray {
|
||||
// Construct a camera ray originating from the origin and directed at randomly sampled
|
||||
// point around the pixel location i, j.
|
||||
|
||||
const offset = sample_square();
|
||||
const pixel_sample = self.pixel00_loc +
|
||||
(toVec3((@as(f64, @floatFromInt(h))) + offset[0]) * self.pixel_delta_v) +
|
||||
(toVec3((@as(f64, @floatFromInt(w))) + offset[1]) * self.pixel_delta_u);
|
||||
|
||||
const ray_origin = if (self.defocus_angle <= 0) self.center else self.defocus_disk_sample();
|
||||
const ray_direction = pixel_sample - ray_origin;
|
||||
|
||||
return Ray{ .orig = ray_origin, .dir = ray_direction };
|
||||
}
|
||||
|
||||
fn defocus_disk_sample(self: Camera) vec3 {
|
||||
const p = random_in_unit_disk();
|
||||
return self.center + (toVec3(p[0]) * self.defocus_disk_u) + (toVec3(p[1]) * self.defocus_disk_v);
|
||||
}
|
||||
};
|
||||
|
||||
fn random_in_unit_disk() vec3 {
|
||||
while (true) {
|
||||
const p = vec3{ utils.rand_mm(-1, 1), utils.rand_mm(-1, 1), 0 };
|
||||
if (mat_math.length_squared(p) < 1)
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
fn ray_color(ray: Ray, depth: i64, world: HittableList) vec3 {
|
||||
if (depth <= 0) {
|
||||
return vec3{ 0, 0, 0 };
|
||||
}
|
||||
|
||||
var rec = HitRecord.new();
|
||||
if (world.hit(ray, Interval{ .min = 0.001, .max = math.inf(f64) }, &rec)) {
|
||||
var ray_scattered = Ray{ .orig = vec3{ 0, 0, 0 }, .dir = vec3{ 0, 0, 0 } };
|
||||
var attenuation = vec3{ 0, 0, 0 };
|
||||
|
||||
if (rec.material.scatter(ray, &rec, &attenuation, &ray_scattered)) {
|
||||
return attenuation * ray_color(ray_scattered, depth - 1, world);
|
||||
}
|
||||
|
||||
return vec3{ 0, 0, 0 };
|
||||
}
|
||||
|
||||
const unit_direction = unit_vector(ray.dir);
|
||||
const a = 0.5 * (unit_direction[1] + 1.0);
|
||||
return toVec3(1.0 - a) * toVec3(1.0) + toVec3(a) * vec3{ 0.5, 0.7, 1.0 };
|
||||
}
|
||||
|
||||
fn sample_square() vec3 {
|
||||
return vec3{ utils.rand_01() - 0.5, utils.rand_01() - 0.5, 0 };
|
||||
}
|
||||
|
||||
fn writeColor(color: vec3, writer: anytype) !void {
|
||||
var r_float = color[0];
|
||||
var g_float = color[1];
|
||||
var b_float = color[2];
|
||||
|
||||
r_float = utils.linear_to_gamma(r_float);
|
||||
g_float = utils.linear_to_gamma(g_float);
|
||||
b_float = utils.linear_to_gamma(b_float);
|
||||
|
||||
const intensity = Interval{ .min = 0, .max = 0.99 };
|
||||
|
||||
const r: u8 = @intFromFloat(256 * intensity.clamp(r_float));
|
||||
const g: u8 = @intFromFloat(256 * intensity.clamp(g_float));
|
||||
const b: u8 = @intFromFloat(256 * intensity.clamp(b_float));
|
||||
try writer.print("{} {} {}\n", .{ r, g, b });
|
||||
}
|
||||
|
||||
fn pbar(value: i64, max: i64) void {
|
||||
const used_char = "-";
|
||||
const number_of_char = 60;
|
||||
const percent_done: i64 = if (value == max - 1) 100 else @divFloor(value * 100, max);
|
||||
const full_char: i64 = @divFloor(number_of_char * percent_done, 100);
|
||||
|
||||
print("\r|", .{});
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < number_of_char) : (i += 1) {
|
||||
if (i < full_char) {
|
||||
print("{s}", .{used_char});
|
||||
} else {
|
||||
print(" ", .{});
|
||||
}
|
||||
}
|
||||
|
||||
print("| {}%", .{percent_done});
|
||||
|
||||
if (percent_done == 100) {
|
||||
print("\n", .{});
|
||||
}
|
||||
}
|
107
src/hittable.zig
Normal file
107
src/hittable.zig
Normal file
@ -0,0 +1,107 @@
|
||||
const std = @import("std");
|
||||
const vec3 = @Vector(3, f64);
|
||||
|
||||
const utils = @import("utils.zig");
|
||||
const Interval = utils.Interval;
|
||||
const toVec3 = utils.toVec3;
|
||||
|
||||
const mat_math = @import("mat_math.zig");
|
||||
const dot = mat_math.dot;
|
||||
const set_face_normal = mat_math.set_face_normal;
|
||||
|
||||
const material_import = @import("material.zig");
|
||||
const Material = material_import.Material;
|
||||
const Metal = material_import.Metal;
|
||||
|
||||
pub const Ray = struct {
|
||||
orig: vec3,
|
||||
dir: vec3,
|
||||
};
|
||||
|
||||
pub const Hittable = union(enum) {
|
||||
sphere: Sphere,
|
||||
//cube: Cube,
|
||||
|
||||
pub fn hit(self: *const Hittable, ray: Ray, interval: Interval, rec: *HitRecord) bool {
|
||||
return switch (self.*) {
|
||||
.sphere => |*s| s.hit(ray, interval, rec),
|
||||
//.cube => |*c| c.hit(),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
pub const HittableList = struct {
|
||||
list: []const Hittable,
|
||||
|
||||
pub fn hit(self: *const HittableList, ray: Ray, ray_t: Interval, rec: *HitRecord) bool {
|
||||
var temp_rec: HitRecord = HitRecord.new();
|
||||
var hit_anything = false;
|
||||
var closest_so_far = ray_t.max;
|
||||
|
||||
for (self.list) |obj| {
|
||||
if (obj.hit(ray, Interval{ .min = ray_t.min, .max = closest_so_far }, &temp_rec)) {
|
||||
hit_anything = true;
|
||||
closest_so_far = temp_rec.t;
|
||||
rec.* = temp_rec;
|
||||
}
|
||||
}
|
||||
|
||||
return hit_anything;
|
||||
}
|
||||
};
|
||||
|
||||
pub const HitRecord = struct {
|
||||
p: vec3,
|
||||
normal: vec3,
|
||||
material: Material,
|
||||
t: f64,
|
||||
front_face: bool,
|
||||
|
||||
pub fn new() HitRecord {
|
||||
return HitRecord{
|
||||
.p = vec3{ 0, 0, 0 },
|
||||
.normal = vec3{ 0, 0, 0 },
|
||||
.material = Material{ .metal = Metal{ .albedo = vec3{ 0, 0, 0 }, .fuzz = 1.0 } },
|
||||
.t = 0,
|
||||
.front_face = false,
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
pub const Sphere = struct {
|
||||
center: vec3,
|
||||
radius: f64,
|
||||
material: Material,
|
||||
|
||||
pub fn hit(self: Sphere, ray: Ray, ray_t: Interval, rec: *HitRecord) bool {
|
||||
const oc = self.center - ray.orig;
|
||||
const a = dot(ray.dir, ray.dir);
|
||||
const h = dot(ray.dir, oc);
|
||||
const c = dot(oc, oc) - self.radius * self.radius;
|
||||
const discriminant = h * h - a * c;
|
||||
if (discriminant < 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const sqrtd = @sqrt(discriminant);
|
||||
|
||||
// Find the nearest root that lies in the acceptable range.
|
||||
const root = (h - sqrtd) / a;
|
||||
if (!ray_t.surrounds(root)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
rec.t = root;
|
||||
rec.p = at(ray, rec.t);
|
||||
rec.normal = (rec.p - self.center) / toVec3(self.radius);
|
||||
const outward_normal = (rec.p - self.center) / toVec3(self.radius);
|
||||
set_face_normal(rec, ray, outward_normal);
|
||||
rec.material = self.material;
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
fn at(ray: Ray, t: f64) vec3 {
|
||||
return ray.orig + toVec3(t) * ray.dir;
|
||||
}
|
176
src/main.zig
Normal file
176
src/main.zig
Normal file
@ -0,0 +1,176 @@
|
||||
const std = @import("std");
|
||||
const print = std.debug.print;
|
||||
const math = std.math;
|
||||
const vec3 = @Vector(3, f64);
|
||||
|
||||
const utils = @import("utils.zig");
|
||||
const Interval = utils.Interval;
|
||||
const toVec3 = utils.toVec3;
|
||||
|
||||
const hit = @import("hittable.zig");
|
||||
const Sphere = hit.Sphere;
|
||||
const Hittable = hit.Hittable;
|
||||
const HittableList = hit.HittableList;
|
||||
const HitRecord = hit.HitRecord;
|
||||
const Ray = hit.Ray;
|
||||
|
||||
const mat_math = @import("mat_math.zig");
|
||||
const unit_vector = mat_math.unit_vector;
|
||||
const length = mat_math.length;
|
||||
|
||||
const cam = @import("camera.zig");
|
||||
const Camera = cam.Camera;
|
||||
|
||||
const mat_import = @import("material.zig");
|
||||
const Material = mat_import.Material;
|
||||
const Lambertian = mat_import.Lambertian;
|
||||
const Metal = mat_import.Metal;
|
||||
const Dielectric = mat_import.Dielectric;
|
||||
|
||||
pub fn main() !void {
|
||||
const file = try std.fs.cwd().createFile("image.ppm", .{});
|
||||
defer file.close();
|
||||
var buffered_writer = std.io.bufferedWriter(file.writer());
|
||||
const writer = buffered_writer.writer();
|
||||
const camera = Camera.new();
|
||||
|
||||
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
|
||||
defer arena.deinit();
|
||||
const alloc = arena.allocator();
|
||||
|
||||
const world = try generateRandomScene(alloc);
|
||||
|
||||
const start_time: i64 = std.time.milliTimestamp();
|
||||
try camera.render(world, &writer);
|
||||
const end_time: i64 = std.time.milliTimestamp();
|
||||
const total_time: f64 = @as(f64, @floatFromInt(end_time - start_time)) / 1000;
|
||||
|
||||
print("Rendering took {} s\n", .{total_time});
|
||||
print("Potential FPS: {}\n", .{1 / total_time});
|
||||
|
||||
// Flush the buffered writer to ensure all data is written to the file
|
||||
try buffered_writer.flush();
|
||||
|
||||
try run_convert_image();
|
||||
try run_open_image();
|
||||
}
|
||||
|
||||
pub fn run_convert_image() !void {
|
||||
const exec_result = try std.process.Child.run(.{
|
||||
.allocator = std.heap.page_allocator,
|
||||
.argv = &[_][]const u8{
|
||||
"convert",
|
||||
"image.ppm",
|
||||
"image.png",
|
||||
},
|
||||
});
|
||||
|
||||
switch (exec_result.term) {
|
||||
.Exited => |code| {
|
||||
if (code != 0) {
|
||||
std.debug.print("Convert image: Command exited with non-zero status code: {}\n", .{code});
|
||||
}
|
||||
},
|
||||
else => {
|
||||
std.debug.print("Convert image: Command did not exit normally\n", .{});
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run_open_image() !void {
|
||||
const exec_result = try std.process.Child.run(.{
|
||||
.allocator = std.heap.page_allocator,
|
||||
.argv = &[_][]const u8{
|
||||
"explorer.exe",
|
||||
"image.png",
|
||||
},
|
||||
});
|
||||
|
||||
switch (exec_result.term) {
|
||||
.Exited => |code| {
|
||||
if (code != 0) {
|
||||
std.debug.print("Open image: Command exited with non-zero status code: {}\n", .{code});
|
||||
}
|
||||
},
|
||||
else => {
|
||||
std.debug.print("Open image: Command did not exit normally\n", .{});
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn generateRandomScene(alloc: std.mem.Allocator) !HittableList {
|
||||
var spheres = std.ArrayList(Hittable).init(alloc);
|
||||
|
||||
// Ground sphere
|
||||
try spheres.append(.{
|
||||
.sphere = Sphere{
|
||||
.center = vec3{ 0, -1000, 0 },
|
||||
.radius = 1000,
|
||||
.material = Material{ .lambertian = Lambertian{ .albedo = vec3{ 0.5, 0.5, 0.5 } } },
|
||||
},
|
||||
});
|
||||
|
||||
// Smaller spheres
|
||||
var a: i32 = -11;
|
||||
while (a < 11) : (a += 1) {
|
||||
var b: i32 = -11;
|
||||
while (b < 11) : (b += 1) {
|
||||
const choose_mat = utils.rand_01();
|
||||
const center = vec3{
|
||||
@as(f64, @floatFromInt(a)) + 0.9 * utils.rand_01(),
|
||||
0.2,
|
||||
@as(f64, @floatFromInt(b)) + 0.9 * utils.rand_01(),
|
||||
};
|
||||
|
||||
var sphere_material: Material = undefined;
|
||||
|
||||
if (choose_mat < 0.5) {
|
||||
// diffuse
|
||||
const albedo = utils.rand_vec3_01();
|
||||
sphere_material = Material{ .lambertian = Lambertian{ .albedo = albedo } };
|
||||
} else if (choose_mat < 0.8) {
|
||||
// metal
|
||||
const albedo = utils.rand_vec3_01();
|
||||
const fuzz = utils.rand_01() * 0.5;
|
||||
sphere_material = Material{ .metal = Metal{ .albedo = albedo, .fuzz = fuzz } };
|
||||
} else {
|
||||
// glass
|
||||
sphere_material = Material{ .dielectric = Dielectric{ .refraction_index = 1.5 } };
|
||||
}
|
||||
|
||||
try spheres.append(.{
|
||||
.sphere = Sphere{
|
||||
.center = center,
|
||||
.radius = 0.2,
|
||||
.material = sphere_material,
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Three large spheres
|
||||
try spheres.append(.{
|
||||
.sphere = Sphere{
|
||||
.center = vec3{ 0, 1, 0 },
|
||||
.radius = 1.0,
|
||||
.material = Material{ .dielectric = Dielectric{ .refraction_index = 1.5 } },
|
||||
},
|
||||
});
|
||||
try spheres.append(.{
|
||||
.sphere = Sphere{
|
||||
.center = vec3{ -4, 1, 0 },
|
||||
.radius = 1.0,
|
||||
.material = Material{ .lambertian = Lambertian{ .albedo = vec3{ 0.4, 0.2, 0.1 } } },
|
||||
},
|
||||
});
|
||||
try spheres.append(.{
|
||||
.sphere = Sphere{
|
||||
.center = vec3{ 4, 1, 0 },
|
||||
.radius = 1.0,
|
||||
.material = Material{ .metal = Metal{ .albedo = vec3{ 0.7, 0.6, 0.5 }, .fuzz = 0.0 } },
|
||||
},
|
||||
});
|
||||
|
||||
// Convert ArrayList to a slice and create HittableList
|
||||
return HittableList{ .list = spheres.items };
|
||||
}
|
66
src/mat_math.zig
Normal file
66
src/mat_math.zig
Normal file
@ -0,0 +1,66 @@
|
||||
const vec3 = @Vector(3, f64);
|
||||
const std = @import("std");
|
||||
const math = std.math;
|
||||
|
||||
const utils = @import("utils.zig");
|
||||
const toVec3 = utils.toVec3;
|
||||
|
||||
const hit = @import("hittable.zig");
|
||||
const HitRecord = hit.HitRecord;
|
||||
const Ray = hit.Ray;
|
||||
|
||||
pub fn dot(u: vec3, v: vec3) f64 {
|
||||
return u[0] * v[0] + u[1] * v[1] + u[2] * v[2];
|
||||
}
|
||||
|
||||
pub fn length(v: vec3) f64 {
|
||||
return math.sqrt(math.pow(f64, v[0], 2) + math.pow(f64, v[1], 2) + math.pow(f64, v[2], 2));
|
||||
}
|
||||
|
||||
pub fn length_squared(v: vec3) f64 {
|
||||
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
||||
}
|
||||
|
||||
pub fn unit_vector(v: vec3) vec3 {
|
||||
return v / toVec3(length(v));
|
||||
}
|
||||
|
||||
pub fn random_in_unit_sphere() vec3 {
|
||||
while (true) {
|
||||
const p = utils.rand_vec3_mm(-1, 1);
|
||||
if (length_squared(p) < 1.0) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn random_on_hemisphere(normal: vec3) vec3 {
|
||||
const on_unit_sphere = random_unit_vector();
|
||||
if (dot(on_unit_sphere, normal) > 0.0) {
|
||||
return on_unit_sphere;
|
||||
} else {
|
||||
return -on_unit_sphere;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn random_unit_vector() vec3 {
|
||||
return unit_vector(random_in_unit_sphere());
|
||||
}
|
||||
|
||||
pub fn set_face_normal(rec: *HitRecord, ray: Ray, outward_normal: vec3) void {
|
||||
rec.front_face = dot(ray.dir, outward_normal) < 0;
|
||||
rec.normal = if (rec.front_face) outward_normal else -outward_normal;
|
||||
}
|
||||
|
||||
pub fn near_zero(v: vec3) bool {
|
||||
const s = 1e-8;
|
||||
return ((@abs(v[0]) < s) and (@abs(v[1]) < s) and (@abs(v[2]) < s));
|
||||
}
|
||||
|
||||
pub fn cross(u: vec3, v: vec3) vec3 {
|
||||
return vec3{
|
||||
u[1] * v[2] - u[2] * v[1],
|
||||
u[2] * v[0] - u[0] * v[2],
|
||||
u[0] * v[1] - u[1] * v[0],
|
||||
};
|
||||
}
|
111
src/material.zig
Normal file
111
src/material.zig
Normal file
@ -0,0 +1,111 @@
|
||||
const vec3 = @Vector(3, f64);
|
||||
|
||||
const utils = @import("utils.zig");
|
||||
const Interval = utils.Interval;
|
||||
const toVec3 = utils.toVec3;
|
||||
|
||||
const hit = @import("hittable.zig");
|
||||
const Sphere = hit.Sphere;
|
||||
const Hittable = hit.Hittable;
|
||||
const HittableList = hit.HittableList;
|
||||
const HitRecord = hit.HitRecord;
|
||||
const Ray = hit.Ray;
|
||||
|
||||
const mat_math = @import("mat_math.zig");
|
||||
const near_zero = mat_math.near_zero;
|
||||
const unit_vector = mat_math.unit_vector;
|
||||
const random_unit_vector = mat_math.random_unit_vector;
|
||||
const dot = mat_math.dot;
|
||||
const length_squared = mat_math.length_squared;
|
||||
const math = @import("std").math;
|
||||
|
||||
// Mother struct
|
||||
|
||||
pub const Material = union(enum) {
|
||||
lambertian: Lambertian,
|
||||
metal: Metal,
|
||||
dielectric: Dielectric,
|
||||
|
||||
pub fn scatter(self: *const Material, ray_in: Ray, rec: *HitRecord, attenuation: *vec3, ray_scattered: *Ray) bool {
|
||||
return switch (self.*) {
|
||||
.lambertian => |s| s.scatter(rec, attenuation, ray_scattered),
|
||||
.metal => |s| s.scatter(ray_in, rec, attenuation, ray_scattered),
|
||||
.dielectric => |s| s.scatter(ray_in, rec, attenuation, ray_scattered),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
// Materiaux
|
||||
|
||||
pub const Lambertian = struct {
|
||||
albedo: vec3,
|
||||
|
||||
pub fn scatter(self: *const Lambertian, rec: *HitRecord, attenuation: *vec3, ray_scattered: *Ray) bool {
|
||||
var scatter_direction = rec.*.normal + random_unit_vector();
|
||||
|
||||
if (near_zero(scatter_direction)) {
|
||||
scatter_direction = rec.*.normal;
|
||||
}
|
||||
|
||||
ray_scattered.* = Ray{ .orig = rec.*.p, .dir = scatter_direction };
|
||||
attenuation.* = self.albedo;
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
pub const Metal = struct {
|
||||
albedo: vec3,
|
||||
fuzz: f64,
|
||||
|
||||
pub fn scatter(self: *const Metal, r_in: Ray, rec: *HitRecord, attenuation: *vec3, ray_scattered: *Ray) bool {
|
||||
var reflected = reflect(r_in.dir, rec.*.normal);
|
||||
reflected = unit_vector(reflected) + (toVec3(self.fuzz) * random_unit_vector());
|
||||
ray_scattered.* = Ray{ .orig = rec.p, .dir = reflected };
|
||||
attenuation.* = self.albedo;
|
||||
return (dot(ray_scattered.dir, rec.normal) > 0);
|
||||
}
|
||||
};
|
||||
|
||||
pub const Dielectric = struct {
|
||||
refraction_index: f64,
|
||||
|
||||
pub fn scatter(self: *const Dielectric, r_in: Ray, rec: *HitRecord, attenuation: *vec3, ray_scattered: *Ray) bool {
|
||||
attenuation.* = vec3{ 1, 1, 1 };
|
||||
const ri = if (rec.front_face) (1.0 / self.refraction_index) else self.refraction_index;
|
||||
|
||||
const unit_direction = unit_vector(r_in.dir);
|
||||
const cos_theta = @min(dot(-unit_direction, rec.normal), 1.0);
|
||||
const sin_theta = @sqrt(1.0 - cos_theta * cos_theta);
|
||||
|
||||
const cannot_refract = ri * sin_theta > 1.0;
|
||||
var direction = vec3{ 0, 0, 0 };
|
||||
if ((cannot_refract) and (reflectance(cos_theta, ri) > utils.rand_01())) {
|
||||
direction = reflect(unit_direction, rec.normal);
|
||||
} else {
|
||||
direction = refract(unit_direction, rec.normal, ri);
|
||||
}
|
||||
|
||||
ray_scattered.* = Ray{ .orig = rec.p, .dir = direction };
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
// Physics
|
||||
|
||||
fn reflect(v: vec3, n: vec3) vec3 {
|
||||
return v - toVec3(2 * dot(v, n)) * n;
|
||||
}
|
||||
|
||||
fn refract(uv: vec3, n: vec3, etai_over_etat: f64) vec3 {
|
||||
const cos_theta = @min(dot(-uv, n), 1.0);
|
||||
const r_out_perp = toVec3(etai_over_etat) * (uv + toVec3(cos_theta) * n);
|
||||
const r_out_parallel = toVec3(-@sqrt(@abs(1.0 - length_squared(r_out_perp)))) * n;
|
||||
return r_out_perp + r_out_parallel;
|
||||
}
|
||||
|
||||
fn reflectance(cosine: f64, refraction_index: f64) f64 {
|
||||
var r0 = (1 - refraction_index) / (1 + refraction_index);
|
||||
r0 = r0 * r0;
|
||||
return r0 + (1 - r0) * math.pow(f64, (1 - cosine), 5);
|
||||
}
|
103
src/utils.zig
Normal file
103
src/utils.zig
Normal file
@ -0,0 +1,103 @@
|
||||
const std = @import("std");
|
||||
const math = std.math;
|
||||
const vec3 = @Vector(3, f64);
|
||||
|
||||
pub const Interval = struct {
|
||||
min: f64,
|
||||
max: f64,
|
||||
|
||||
pub fn inf() Interval {
|
||||
return Interval{
|
||||
.min = -math.inf(f64),
|
||||
.max = math.inf(f64),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn new(min: f64, max: f64) Interval {
|
||||
return Interval{
|
||||
.min = min,
|
||||
.max = max,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn size(self: Interval) f64 {
|
||||
return self.max - self.min;
|
||||
}
|
||||
|
||||
pub fn contains(self: Interval, x: f64) bool {
|
||||
return ((self.min <= x) and (x <= self.max));
|
||||
}
|
||||
|
||||
pub fn surrounds(self: Interval, x: f64) bool {
|
||||
return ((self.min < x) and (x < self.max));
|
||||
}
|
||||
|
||||
pub fn clamp(self: Interval, x: f64) f64 {
|
||||
if (x < self.min) {
|
||||
return self.min;
|
||||
}
|
||||
if (x > self.max) {
|
||||
return self.max;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
pub fn toVec3(x: anytype) vec3 {
|
||||
switch (@TypeOf(x)) {
|
||||
comptime_float => {
|
||||
const x_float = @as(f64, x);
|
||||
return vec3{ x_float, x_float, x_float };
|
||||
},
|
||||
i64 => {
|
||||
const x_float = @as(f64, @floatFromInt(x));
|
||||
return vec3{ x_float, x_float, x_float };
|
||||
},
|
||||
comptime_int => {
|
||||
const x_float = @as(f64, @floatFromInt(x));
|
||||
return vec3{ x_float, x_float, x_float };
|
||||
},
|
||||
f64 => {
|
||||
return vec3{ x, x, x };
|
||||
},
|
||||
@Vector(3, f64) => {
|
||||
return x;
|
||||
},
|
||||
usize => {
|
||||
const x_float = @as(f64, @floatFromInt(@as(i64, @intCast(x))));
|
||||
return vec3{ x_float, x_float, x_float };
|
||||
},
|
||||
else => {
|
||||
@panic("Unknow type passed through toVec3\n\n");
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
var rnd = std.rand.DefaultPrng.init(0);
|
||||
|
||||
pub fn rand_01() f64 {
|
||||
return rnd.random().float(f64);
|
||||
}
|
||||
|
||||
pub fn rand_mm(min: f64, max: f64) f64 {
|
||||
return rnd.random().float(f64) * (max - min) + min;
|
||||
}
|
||||
|
||||
pub fn rand_vec3_01() vec3 {
|
||||
return vec3{ rand_01(), rand_01(), rand_01() };
|
||||
}
|
||||
|
||||
pub fn rand_vec3_mm(min: f64, max: f64) vec3 {
|
||||
return vec3{ rand_mm(min, max), rand_mm(min, max), rand_mm(min, max) };
|
||||
}
|
||||
|
||||
pub fn linear_to_gamma(linear_component: f64) f64 {
|
||||
if (linear_component > 0) {
|
||||
return @sqrt(linear_component);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
pub fn degrees_to_radians(degrees: f64) f64 {
|
||||
return degrees * math.pi / 180;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user